JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURES OF TWO INTERMEDIATES IN THE ASSEMBLY OF THE PAPILLOMAVIRUS REPLICATION INITIATION COMPLEX
PDB code 1KSX   (PDB summary)
NDB code PD0282 (NDB atlas)
Duplex length 18 base pairs
Protein Initiator Protein, Replication|virus, DNA binding domain: Alpha-helix|beta-barrel

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' A4 T5 T6 G7 T8 T9 G10 T11 T12 A13 A14 C15 A16 A17 C18 A19 A20 T21 3'
Strand 2    3' T21 A20 A19 C18 A17 A16 C15 A14 A13 T12 T11 G10 T9 T8 G7 T6 T5 A4 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

A4 T21            
    3.2 0.3 -0.2 27° -3°
T5 A20            
    3.1 -0.7 -0.2 24°
T6 A19            
    3.7 0.5 0.4 42° -4°
G7 C18            
    3.1 0.0 -0.5 27°
T8 A17            
    3.0 -0.4 -0.4 28°
T9 A16            
    3.4 0.9 0.6 38° -2° -3°
G10 C15            
    3.0 -0.9 -0.8 30°
T11 A14            
    3.1 0.6 -0.1 36°
T12 A13            
    4.1 0.0 1.4 45° -16° -0°
A13 T12            
    3.1 -0.6 -0.1 36° -2°
A14 T11            
    3.0 0.9 -0.8 30° -4°
C15 G10            
    3.4 -0.9 0.6 38° -2°
A16 T9            
    3.0 0.4 -0.4 28° -5°
A17 T8            
    3.1 -0.0 -0.5 27° -0°
C18 G7            
    3.7 -0.5 0.4 42° -4° -0°
A19 T6            
    3.1 0.7 -0.2 24° -2°
A20 T5            
    3.2 -0.3 -0.2 27°
T21 A4            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -115° A4 T21 -119° C3'-exo    
 -71°   -56° (BI)             -38° (BI)   -52° 
    C2'-endo -118° T5 A20 -96° C2'-endo    
 172°   -118° (BI)             -50° (BI)   44° 
    C2'-endo -143° T6 A19 -114° C2'-endo    
 156°   -109° (BI)             31° (BII)   32° 
    C3'-exo -160° G7 C18 -102° C2'-endo    
 24°   -107° (BI)             -20° (BI)   31° 
    C1'-exo -108° T8 A17 -104° C2'-endo    
 38°   -56° (BI)             -58° (BI)   43° 
    C2'-endo -105° T9 A16 -110° C2'-endo    
 -153°   24° (BII)             -5° (BI)   -174° 
    C2'-endo -151° G10 C15 -127° C2'-endo    
 37°   -74° (BI)             -144° (BI)   36° 
    C2'-endo -102° T11 A14 -97° C2'-endo    
 38°   -68° (BI)             -85° (BI)   171° 
    C2'-endo -95° T12 A13 -131° C2'-endo    
 171°   111° (BII)             111° (BII)   38° 
    C2'-endo -130° A13 T12 -95° C2'-endo    
 36°   -85° (BI)             -67° (BI)   37° 
    C2'-endo -97° A14 T11 -102° C2'-endo    
 -174°   -144° (BI)             -74° (BI)   -153° 
    C2'-endo -127° C15 G10 -151° C2'-endo    
 43°   -5° (BI)             24° (BII)   38° 
    C2'-endo -110° A16 T9 -105° C2'-endo    
 31°   -58° (BI)             -55° (BI)   24° 
    C2'-endo -104° A17 T8 -108° C1'-exo    
 32°   -21° (BI)             -107° (BI)   156° 
    C2'-endo -102° C18 G7 -161° C3'-exo    
 44°   30° (BII)             -109° (BI)   173° 
    C2'-endo -114° A19 T6 -143° C2'-endo    
 -52°   -50° (BI)             -118° (BI)   -71° 
    C2'-endo -96° A20 T5 -118° C2'-endo    
 -90°   -37° (BI)             -56° (BI)   50° 
    C3'-exo -119° T21 A4 -116° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany