JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CO-CRYSTAL STRUCTURE OF HUMAN YY1 ZINC FINGER DOMAIN BOUND TO THE ADENO-ASSOCIATED VIRUS P5 INITIATOR ELEMENT
PDB code 1UBD   (PDB summary)
NDB code PDT038 (NDB atlas)
Duplex length 20 base pairs
Protein Yin and yang 1 (YY1), Transcription factor, DNA binding domain: Cys2-His2 zinc finger

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' A1 G2 G3 G4 T5 C6 T7 C8 C9 A10 T11 T12 T13 T14 G15 A16 A17 G18 C19 G20 3'
Strand 2    3' T40 C39 C38 C37 A36 G35 A34 G33 G32 T31 A30 A29 A28 A27 C26 T25 T24 C23 G22 C21 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

A1 T40            
    2.8 0.5 0.0 28° -5°
G2 C39            
    3.6 -0.5 0.2 35° -4° -4°
G3 C38            
    3.1 -0.6 -0.0 31° -2°
G4 C37            
    3.6 0.4 -0.7 34° -7° -4°
T5 A36            
    3.8 0.5 0.1 40°
C6 G35            
    3.0 -1.0 -0.1 30° -2°
T7 A34            
    3.1 0.5 0.1 38° -6° -5°
C8 G33            
    3.5 0.2 -0.1 34°
C9 G32            
    2.9 -0.2 0.4 38° -2°
A10 T31            
    3.7 0.5 -0.4 32° -0°
T11 A30            
    3.2 -0.3 -0.1 31° -3°
T12 A29            
    3.3 0.3 0.2 37° -5°
T13 A28            
    3.1 0.1 -0.4 29° -2°
T14 A27            
    3.9 0.1 -0.1 37° 16°
G15 C26            
    2.9 0.4 0.2 33° -8°
A16 T25            
    3.5 -0.8 -0.3 43° -2°
A17 T24            
    3.2 0.7 -0.4 31°
G18 C23            
    3.0 0.1 -1.4 15° -6° 12°
C19 G22            
    3.5 0.7 0.1 60° -7°
G20 C21            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    O1'-endo 171° A1 T40 -103° C1'-exo    
 -29°   -7° (BI)             23° (BII)   148° 
    C3'-exo -68° G2 C39 -176° C4'-exo    
 53°   119° (BII)             -60° (BI)   78° 
    C1'-exo -113° G3 C38 -129° C1'-exo    
 76°   -42° (BI)             17° (BI)   -23° 
    C1'-exo -131° G4 C37 -97° C2'-endo    
 156°   -85° (BI)             -48° (BI)   58° 
    O1'-endo -156° T5 A36 -131° C1'-exo    
 48°   -46° (BI)             111° (BII)   42° 
    C1'-exo -127° C6 G35 -93° C2'-endo    
 37°   -25° (BI)             -80° (BI)   -51° 
    C2'-endo -104° T7 A34 -103° C3'-exo    
 33°   -25° (BI)             -24° (BI)   44° 
    O1'-endo -133° C8 G33 -112° C2'-endo    
 48°   -59° (BI)             -53° (BI)   -6° 
    C1'-exo -126° C9 G32 -96° C3'-exo    
 17°   -51° (BI)             17° (BI)   24° 
    C2'-endo -95° A10 T31 -113° C2'-endo    
 60°   -94° (BI)             -86° (BI)   43° 
    O1'-endo -133° T11 A30 -115° O1'-endo    
 34°   -108° (BI)             -50° (BI)   59° 
    C2'-endo -97° T12 A29 -93° C2'-endo    
 45°   -69° (BI)             -91° (BI)   44° 
    C1'-exo -101° T13 A28 -117° C2'-endo    
 44°   -67° (BI)             -42° (BI)   49° 
    C1'-exo -111° T14 A27 -89° C2'-endo    
 42°   -141° (BI)             -160° (BII)   39° 
    C2'-endo -101° G15 C26 -110° O1'-endo    
 -31°   -36° (BI)             11° (BI)   98° 
    C3'-exo -93° A16 T25 -139° C1'-exo    
 -90°   -45° (BI)             -18° (BI)   -166° 
    C3'-exo -125° A17 T24 -148° C1'-exo    
 177°   -105° (BI)             -115° (BI)   129° 
    C3'-exo -126° G18 C23 173° C4'-exo    
 29°   -105° (BI)             6° (BI)   93° 
    C2'-endo -64° C19 G22 -146° C2'-exo    
 150°   142° (BII)             121° (BII)   -45° 
    C3'-endo -151° G20 C21 -175° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany