JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF AN ENGRAILED HOMEODOMAIN-DNA COMPLEX AT ANGSTROMS RESOLUTION: A FRAMEWORK FOR UNDERSTANDING HOMEODO INTERACTIONS
PDB code 1HDD   (PDB summary)
NDB code PDT004 (NDB atlas)
Duplex length 20 base pairs
Protein Engrailed, Transcription factor, DNA binding domain: Helix-turn-helix, homeodomain

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' T2 T3 T4 G5 C6 C7 A8 T9 G10 T11 A12 A13 T14 T15 A16 C17 C18 T19 A20 A21 3'
Strand 2    3' A42 A41 A40 C39 G38 G37 T36 A35 C34 A33 T32 T31 A30 A29 T28 G27 G26 A25 T24 T23 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

T2 A42            
    3.6 -0.3 0.2 35° -2°
T3 A41            
    3.1 -0.0 -0.2 30°
T4 A40            
    3.7 0.2 -0.2 33° -0°
G5 C39            
    3.3 -0.1 -0.6 35° -1°
C6 G38            
    3.4 0.4 0.1 24° -7°
C7 G37            
    3.0 0.3 1.0 43°
A8 T36            
    3.7 -0.3 -1.1 32° -5°
T9 A35            
    3.7 -0.2 0.9 48° -3°
G10 C34            
    3.1 0.1 -0.5 29° -4°
T11 A33            
    3.6 -0.4 0.2 36° -3°
A12 T32            
    3.3 0.5 0.1 38° -2° -1°
A13 T31            
    3.3 -0.4 -0.6 31° -1° -2°
T14 A30            
    3.4 -0.3 -0.4 32°
T15 A29            
    3.0 -0.6 0.1 32°
A16 T28            
    3.2 0.5 -0.2 32°
C17 G27            
    4.2 0.2 -0.7 39° 10° -3°
C18 G26            
    3.0 -1.4 -0.1 27° 13°
T19 A25            
    3.4 0.7 0.3 41°
A20 T24            
    3.5 -0.2 -0.7 22°
A21 T23            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    O1'-endo -122° T2 A42 -105° C2'-endo    
 61°   -81° (BI)             -42° (BI)   54° 
    C2'-endo -111° T3 A41 -92° C2'-endo    
 29°   19° (BI)             -114° (BI)   -51° 
    C2'-endo -105° T4 A40 -87° C3'-exo    
 -22°   166° (BII)             -82° (BI)   40° 
    C2'-endo -87° G5 C39 -95° C3'-exo    
 100°   -36° (BI)             -27° (BI)   13° 
    C1'-exo -151° C6 G38 -105° C2'-endo    
 100°   -14° (BI)             12° (BI)   43° 
    O1'-endo -159° C7 G37 -98° C2'-endo    
 44°   -25° (BI)             -64° (BI)   50° 
    C2'-endo -93° A8 T36 -120° C1'-exo    
 56°   -31° (BI)             -111° (BI)   34° 
    C1'-exo -143° T9 A35 -94° C1'-exo    
 20°   -81° (BI)             139° (BII)   19° 
    C4'-endo -88° G10 C34 -66° C2'-endo    
 71°   70° (BII)             -33° (BI)   33° 
    C2'-endo -94° T11 A33 -85° C3'-exo    
 30°   92° (BII)             3° (BI)   17° 
    C2'-endo -97° A12 T32 -88° C2'-endo    
 4°   -48° (BI)             -41° (BI)   100° 
    C2'-endo -96° A13 T31 -152° O1'-endo    
 17°   -21° (BI)             -72° (BI)   35° 
    C3'-exo -84° T14 A30 -122° C1'-exo    
 36°   17° (BI)             -29° (BI)   55° 
    C1'-exo -127° T15 A29 -110° C2'-endo    
 11°   -28° (BI)             -132° (BI)   79° 
    C2'-endo -84° A16 T28 -140° O1'-endo    
 39°   -18° (BI)             -121° (BI)   26° 
    O1'-endo -118° C17 G27 -144° C4'-exo    
 46°   -117° (BI)             23° (BII)   34° 
    C3'-endo -159° C18 G26 -85° C2'-endo    
 90°   -126° (BI)             17° (BI)   19° 
    C2'-endo -110° T19 A25 -87° C2'-endo    
 22°   -79° (BI)             -0° (BI)   15° 
    C4'-exo -106° A20 T24 -92° C2'-endo    
 -174°   -118° (BI)             -21° (BI)   48° 
    C2'-endo -133° A21 T23 -100° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany