JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title TUMOR SUPPRESSOR P53 COMPLEXED WITH DNA
PDB code 1TUP   (PDB summary)
NDB code PDR027 (NDB atlas)
Duplex length 20 base pairs
Protein P53 tumor suppressor, Transcription factor, DNA binding domain: Beta barrel, p53

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' T1002 T1003 C1004 C1005 T1006 A1007 G1008 A1009 C1010 T1011 T1012 G1013 C1014 C1015 C1016 A1017 A1018 T1019 T1020 A1021 3'
Strand 2    3' A1121 A1120 G1119 G1118 A1117 T1116 C1115 T1114 G1113 A1112 A1111 C1110 G1109 G1108 G1107 T1106 T1105 A1104 A1103 T1102 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

T1002 A1121            
    3.8 0.5 -0.2 23° -7°
T1003 A1120            
    2.8 0.3 -0.6 34° -5°
C1004 G1119            
    3.8 0.5 0.3 31° -6°
C1005 G1118            
    3.3 -0.9 -0.9 26° 12° -1°
T1006 A1117            
    2.8 1.1 0.6 25° -3°
A1007 T1116            
    3.1 -0.2 0.3 56° -8°
G1008 C1115            
    3.1 -0.3 -0.3 21° -3°
A1009 T1114            
    3.1 0.2 -0.5 34° -8°
C1010 G1113            
    3.9 -0.0 -0.3 38° -4°
T1011 A1112            
    3.6 0.9 0.4 33° -6°
T1012 A1111            
    3.0 -0.5 0.7 36° -6°
G1013 C1110            
    3.3 0.5 -0.6 30°
C1014 G1109            
    3.3 -1.1 -0.2 35° -4° -2°
C1015 G1108            
    3.6 0.4 -0.2 33°
C1016 G1107            
    3.3 0.3 0.6 40° -0°
A1017 T1106            
    2.9 -0.5 -0.2 33° -7°
A1018 T1105            
    3.8 1.3 -0.5 29° -0°
T1019 A1104            
    3.3 -0.5 0.1 42° -2°
T1020 A1103            
    3.7 -0.2 0.2 34° 14°
A1021 T1102            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C1'-exo -143° T1002 A1121 -158° C2'-endo    
 31°   -21° (BI)             -14° (BI)   42° 
    C4'-exo -146° T1003 A1120 -61° C3'-exo    
 -156°   -9° (BI)             -139° (BI)   66° 
    C4'-exo -164° C1004 G1119 -122° C1'-exo    
 151°   -111° (BI)             -99° (BI)   3° 
    C2'-exo 168° C1005 G1118 -94° O1'-endo    
 10°   13° (BI)             -37° (BI)   -160° 
    C4'-exo -155° T1006 A1117 -111° C2'-endo    
 148°   -71° (BI)             -72° (BI)   77° 
    C3'-endo -174° A1007 T1116 -137° C4'-exo    
 99°   -117° (BI)             -113° (BI)   92° 
    C2'-endo -105° G1008 C1115 -133° C1'-exo    
 37°   -50° (BI)             -93° (BI)   -118° 
    C2'-endo -91° A1009 T1114 -143° O1'-endo    
 -133°   130° (BII)             -97° (BI)   63° 
    C1'-exo -141° C1010 G1113 -148° O1'-endo    
 66°   -96° (BI)             -60° (BI)   149° 
    C2'-endo -103° T1011 A1112 -127° C1'-exo    
 47°   -72° (BI)             146° (BII)   23° 
    O1'-endo -105° T1012 A1111 -85° C2'-endo    
 56°   -24° (BI)             30° (BII)   44° 
    C2'-endo -122° G1013 C1110 -131° C1'-exo    
 45°   -67° (BI)             -6° (BI)   29° 
    C1'-exo -104° C1014 G1109 -106° C2'-endo    
 35°   51° (BII)             -109° (BI)   -20° 
    O1'-endo -122° C1015 G1108 -100° C3'-exo    
 46°   -166° (BII)             -93° (BI)   41° 
    C2'-endo -104° C1016 G1107 -91° C2'-endo    
 23°   1° (BI)             8° (BI)   59° 
    C1'-exo -105° A1017 T1106 -117° C4'-exo    
 53°   -105° (BI)             -149° (BI)   23° 
    C2'-endo -112° A1018 T1105 -135° O1'-endo    
 31°   -50° (BI)             -15° (BI)   21° 
    C1'-exo -112° T1019 A1104 -112° C3'-exo    
 74°   9° (BI)             -28° (BI)   -180° 
    C1'-exo -146° T1020 A1103 -114° C3'-exo    
 18°   -4° (BI)             -4° (BI)   -7° 
    C4'-exo -113° A1021 T1102 -107° C4'-exo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany