JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title TOPOISOMERASE I/DNA COMPLEX
PDB code 1A36   (PDB summary)
NDB code PDE0141 (NDB atlas)
Duplex length 22 base pairs
Protein Topoisomerase I, Isomerase

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' A1 A2 A3 A4 A5 G6 A7 C8 T9 T10 A11 G12 A13 A14 A15 A16 A17 T18 T19 T20 T21 T22 3'
Strand 2    3' T122 T121 T120 T119 T118 C117 T116 G115 A114 A113 T112 C111 T110 T109 T108 T107 T106 A105 A104 A103 A102 A101 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

A1 T122            
    3.1 0.6 0.5 34° -4° -2°
A2 T121            
    2.9 -0.7 -0.1 33° 11° -6°
A3 T120            
    3.5 -0.3 0.4 39° -8° -1°
A4 T119            
    3.0 0.1 -0.3 33° -2° -4°
A5 T118            
    3.4 0.3 -0.2 34° -1°
G6 C117            
    3.8 -0.4 -0.2 36° -2°
A7 T116            
    3.1 0.5 -0.1 31°
C8 G115            
    3.9 -0.1 -0.3 38° -3°
T9 A114            
    3.0 -0.2 -0.2 35° -5°
T10 A113            
    3.5 0.8 0.5 42° -2°
A11 T112            
    2.7 -0.9 0.7 28° -0° -8°
G12 C111            
    3.7 0.1 -0.2 38° -5°
A13 T110            
    3.3 0.5 -0.2 30° -6°
A14 T109            
    2.9 -0.8 -0.1 43° -2°
A15 T108            
    3.2 0.8 0.1 32° -0° -2°
A16 T107            
    3.2 -0.3 0.2 33° -2°
A17 T106            
    3.2 -0.1 -0.7 36°
T18 A105            
    3.5 0.2 -0.1 32° -7°
T19 A104            
    3.1 0.2 0.3 46° -2°
T20 A103            
    3.0 0.4 -0.1 34° -1°
T21 A102            
    3.4 -0.4 0.2 40°
T22 A101            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -63° A1 T122 -98° C2'-endo    
 45°   162° (BII)             94° (BII)   30° 
    C3'-exo -86° A2 T121 -83° C2'-endo    
 43°   -79° (BI)             -83° (BI)   46° 
    C2'-endo -96° A3 T120 -110° C2'-endo    
 29°   74° (BII)             -17° (BI)   9° 
    C2'-endo -97° A4 T119 -103° C2'-endo    
 47°   -106° (BI)             -25° (BI)   47° 
    C2'-endo -101° A5 T118 -116° C2'-endo    
 49°   -77° (BI)             -70° (BI)   38° 
    C1'-exo -117° G6 C117 -108° C2'-endo    
 44°   -79° (BI)             -80° (BI)   49° 
    C2'-endo -108° A7 T116 -118° C2'-endo    
 54°   -66° (BI)             -69° (BI)   -89° 
    C2'-endo -114° C8 G115 -130° C3'-exo    
 53°   -50° (BI)             -29° (BI)   48° 
    C2'-endo -131° T9 A114 -99° C2'-endo    
 64°   -57° (BI)             -86° (BI)   53° 
    C1'-exo -121° T10 A113 -117° C2'-endo    
 -49°   -15° (BI)             112° (BII)   42° 
    C3'-exo -77° A11 T112 -90° C2'-endo    
 59°   -56° (BI)             -36° (BI)   39° 
    C2'-endo -108° G12 C111 -114° C1'-exo    
 44°   -75° (BI)             -57° (BI)   43° 
    C2'-endo -115° A13 T110 -122° C1'-exo    
 33°   -90° (BI)             -42° (BI)   40° 
    C2'-endo -103° A14 T109 -101° C2'-endo    
 39°   -62° (BI)             -111° (BI)   45° 
    C2'-endo -114° A15 T108 -116° C1'-exo    
 39°   -35° (BI)             -4° (BI)   55° 
    C1'-exo -111° A16 T107 -116° C2'-endo    
 37°   4° (BI)             -109° (BI)   -56° 
    C1'-exo -117° A17 T106 -111° C3'-exo    
 -64°   -53° (BI)             -53° (BI)   27° 
    C2'-endo -102° T18 A105 -107° C2'-endo    
 52°   -109° (BI)             8° (BI)   26° 
    C2'-endo -118° T19 A104 -107° C2'-endo    
 45°   -87° (BI)             96° (BII)   26° 
    C2'-endo -98° T20 A103 -96° C2'-endo    
 49°   -32° (BI)             17° (BI)   49° 
    C2'-endo -112° T21 A102 -106° C2'-endo    
 57°   -35° (BI)             -78° (BI)   -58° 
    C1'-exo -125° T22 A101 -111° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany