JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF A MUTANT IHF (BETAE44A) COMPLEXED WITH A VARIANT H' SITE (T44A)
PDB code 1OUZ   (PDB summary)
NDB code PD0405 (NDB atlas)
Duplex length 20 base pairs
Protein MUTANT IHF (BETAE44A) INTEGRATION HOST FACTOR ALPHA-SUBUNIT, Transcription Factor|recombinase|DNA packing/chromatin|virus, DNA binding domain: Beta, DNA binding domain: Basic

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' G49 G48 T47 G46 C45 T44 A43 C42 A41 A40 A39 T38 T37 G36 A35 T34 A33 A32 G31 C30 3'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

G49            
    3.8 -0.5 -0.2 38° -2°
G48 C49            
    3.2 0.6 -1.0 30°
T47 C48            
    3.8 -0.2 1.1 46° -16°
G46 A47            
    2.8 -0.8 -0.6 27° -9°
C45 C46            
    3.5 1.4 0.2 38° -2°
T44 G45            
    3.2 -1.1 0.5 39° -11° -14°
A43 A44            
    3.5 0.1 -1.1 33° -1°
C42 T43            
    3.5 -0.2 0.3 38° -1°
A41 G42            
    3.1 -0.4 -0.2 31° -2°
A40 T41            
    2.9 -0.1 -0.8 26° 10° -3°
A39 T40            
    3.0 -0.3 -0.4 25°
T38 T39            
    7.2 0.3 -0.4 32° 53° -1°
T37 A38            
    3.1 0.5 0.7 34° -5°
G36 A37            
    2.7 -0.9 1.0 35° -5° -6°
A35 C36            
    3.3 0.2 -0.6 32° -4°
T34 T35            
    3.3 -0.1 -0.3 38° -8°
A33 A34            
    3.4 -0.2 -0.1 35° -6°
A32 T33            
    3.4 0.0 0.1 37° -2° -2°
G31 T32            
    3.5 0.1 0.1 32°
C30 C31            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -100° G49 -155° C2'-endo    
 54°   3° (BI)             0° (BI)   47° 
    C2'-endo -126° G48 C49 -103° C1'-exo    
 48°   -88° (BI)             -81° (BI)   52° 
    C2'-endo -104° T47 C48 -110° C2'-endo    
 50°   59° (BII)             111° (BII)   48° 
    C2'-endo -103° G46 A47 -83° C1'-exo    
 51°   -59° (BI)             -82° (BI)   50° 
    C1'-exo -113° C45 C46 -112° C2'-endo    
 -79°   -46° (BI)             32° (BII)   52° 
    C3'-exo -93° T44 G45 -100° C2'-endo    
 56°   17° (BI)             -59° (BI)   53° 
    C2'-endo -118° A43 A44 -130° C1'-exo    
 50°   -91° (BI)             -87° (BI)   54° 
    C1'-exo -116° C42 T43 -125° C1'-exo    
 50°   -88° (BI)             -29° (BI)   47° 
    C2'-endo -100° A41 G42 -96° C2'-endo    
 49°   -60° (BI)             -106° (BI)   51° 
    C1'-exo -111° A40 T41 -122° C1'-exo    
 -57°   -50° (BI)             -107° (BI)   48° 
    C3'-exo -90° A39 T40 -111° C1'-exo    
 29°   -4° (BI)             -106° (BI)   53° 
    O1'-endo -109° T38 T39 -111° C2'-endo    
 52°   -71° (BI)             -55° (BI)   52° 
    C2'-endo -110° T37 A38 -101° C3'-endo    
 54°   -65° (BI)             -71° (BI)   -174° 
    C2'-endo -99° G36 A37 -104° C4'-exo    
 55°   -5° (BI)             -30° (BI)   55° 
    C2'-endo -99° A35 C36 -127° C1'-exo    
 56°   -73° (BI)             -68° (BI)   55° 
    C1'-exo -123° T34 T35 -127° C1'-exo    
 55°   -77° (BI)             -65° (BI)   55° 
    C1'-exo -122° A33 A34 -126° C1'-exo    
 52°   -74° (BI)             -73° (BI)   54° 
    C1'-exo -125° A32 T33 -118° C2'-endo    
 52°   -65° (BI)             -63° (BI)   55° 
    C1'-exo -132° G31 T32 -122° C1'-exo    
 48°   -80° (BI)             -35° (BI)   52° 
    C1'-exo -115° C30 C31 -87° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany