JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF WILD-TYPE CRE RECOMBINASE-LOXP SYNAPSE
PDB code 1OUQ   (PDB summary)
NDB code PD0404 (NDB atlas)
Duplex length 21 base pairs
Protein Recombinase CRE, Recombinase, DNA binding domain: Alpha-helix

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' T116 G117 T118 A119 T120 G121 C122 T123 A124 T125 A126 C127 G128 A129 A130 G131 T132 T133 A134 T135 C136 3'
Strand 2    3' A121 C120 A119 T118 A117 C116 G115 A114 T113 A112 T111 G110 C109 T108 T107 C106 A105 A104 T103 A102 G101 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

T116 A121            
    4.1 -0.9 -0.3 28° 13° -10°
G117 C120            
    3.8 0.6 -0.8 36° 11°
T118 A119            
    4.2 0.1 0.2 54° -1°
A119 T118            
    5.4 0.4 -0.1 -16° 17°
T120 A117            
    3.3 0.3 0.4 53° -9° -10°
G121 C116            
    3.6 -1.0 -0.3 29° -3°
C122 G115            
    3.4 -0.3 -0.5 38° -3°
T123 A114            
    3.6 0.5 0.2 44° -0°
A124 T113            
    3.5 -1.2 -0.6 29° -2°
T125 A112            
    3.6 0.2 -0.3 44° 12°
A126 T111            
    2.7 0.0 0.3 26°
C127 G110            
    3.4 -0.1 0.7 30° -5°
G128 C109            
    3.3 0.1 -0.2 34°
A129 T108            
    3.0 -0.1 -0.1 35° -3°
A130 T107            
    3.4 0.3 -0.3 37° -3°
G131 C106            
    3.6 -0.4 -0.7 33° -0°
T132 A105            
    3.0 -0.3 -0.2 24°
T133 A104            
    3.4 0.6 1.2 46° -1° -0°
A134 T103            
    3.0 0.2 -0.8 30°
T135 A102            
    3.4 -0.2 0.3 44° -5°
C136 G101            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -84° T116 A121 -79° C2'-endo    
 52°   -28° (BI)             -71° (BI)   35° 
    C2'-endo -97° G117 C120 -111° C2'-endo    
 44°   -61° (BI)             -84° (BI)   43° 
    C2'-endo -105° T118 A119 -102° C3'-exo    
 172°   -50° (BI)             19° (BI)   43° 
    C3'-exo -148° A119 T118 -99° C2'-endo    
 -149°   -71° (BI)             -39° (BI)   45° 
    C2'-endo -82° T120 A117 -82° C3'-exo    
 26°   138° (BII)             -27° (BI)   176° 
    C2'-endo -87° G121 C116 -166° C1'-exo    
 122°   -35° (BI)             -92° (BI)   57° 
    C1'-exo -152° C122 G115 -124° C1'-exo    
 46°   -80° (BI)             -66° (BI)   71° 
    C2'-endo -100° T123 A114 -143° C2'-endo    
 -146°   52° (BII)             -39° (BI)   -64° 
    C2'-endo -155° A124 T113 -108° C3'-exo    
 65°   -56° (BI)             -45° (BI)   55° 
    C1'-exo -140° T125 A112 -118° C2'-endo    
 -57°   -44° (BI)             -42° (BI)   62° 
    C3'-exo -101° A126 T111 -106° C2'-endo    
 50°   -81° (BI)             -21° (BI)   31° 
    C2'-endo -88° C127 G110 -93° C2'-endo    
 42°   62° (BII)             -61° (BI)   -55° 
    C2'-endo -111° G128 C109 -110° C3'-exo    
 37°   -71° (BI)             -56° (BI)   -52° 
    C2'-endo -101° A129 T108 -101° C3'-exo    
 47°   -15° (BI)             -46° (BI)   59° 
    C2'-endo -114° A130 T107 -120° C2'-endo    
 48°   -42° (BI)             -63° (BI)   161° 
    C2'-endo -116° G131 C106 -173° O1'-endo    
 -69°   -37° (BI)             -101° (BI)   45° 
    C3'-exo -119° T132 A105 -103° C1'-exo    
 47°   -82° (BI)             -89° (BI)   66° 
    C2'-endo -96° T133 A104 -117° C2'-endo    
 68°   -8° (BI)             7° (BI)   37° 
    C2'-endo -124° A134 T103 -98° C2'-endo    
 -73°   -21° (BI)             -89° (BI)   51° 
    C3'-exo -111° T135 A102 -109° C2'-endo    
 -164°   -46° (BI)             -73° (BI)   -169° 
    C2'-endo -141° C136 G101 -139° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany