JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF THE MATA1/MATALPHA2-3A HETERODIMER BOUND TO DNA COMPLEX
PDB code 1LE8   (PDB summary)
NDB code PD0308 (NDB atlas)
Duplex length 19 base pairs
Protein MAT (Mating type) A1/MATALPHA2-3A HETERODIMER, Transcription Factor, DNA binding domain: Alpha-helix, DNA binding domain: Helix-turn-helix

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' C3 A4 T5 G6 T7 A8 A9 A10 A11 A12 T13 T14 T15 A16 C17 A18 T19 C20 A21 3'
Strand 2    3' G42 T41 A40 C39 A38 T37 T36 T35 T34 T33 A32 A31 A30 T29 G28 T27 A26 G25 T24 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

C3 G42            
    3.4 -0.3 0.7 38° -2° -0°
A4 T41            
    3.0 0.3 -0.7 27° -4°
T5 A40            
    3.4 0.3 -0.1 38° -0°
G6 C39            
    3.2 -0.8 -1.0 28°
T7 A38            
    3.5 -0.2 0.6 42° -0° -1°
A8 T37            
    3.3 0.6 0.5 27° 10°
A9 T36            
    2.9 -0.1 -0.0 31° -2°
A10 T35            
    3.4 -0.1 -0.1 37° -7° -0°
A11 T34            
    3.4 0.1 0.1 38° -7°
A12 T33            
    3.2 -0.2 -0.5 33° -3° -2°
T13 A32            
    3.3 0.4 -0.2 36° -3°
T14 A31            
    3.0 -0.6 -0.1 35° -2°
T15 A30            
    3.7 0.3 1.2 41° -0° -1°
A16 T29            
    2.7 0.0 -0.5 28° -3°
C17 G28            
    3.6 -0.5 0.1 37°
A18 T27            
    2.9 1.1 -0.8 28° -1°
T19 A26            
    3.3 -0.8 -0.4 34°
C20 G25            
    3.2 0.3 0.6 36°
A21 T24            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -146° C3 G42 -92° C2'-endo    
 40°   -32° (BI)             -83° (BI)   -57° 
    C2'-endo -105° A4 T41 -100° C3'-exo    
 32°   -94° (BI)             -33° (BI)   -174° 
    C2'-endo -102° T5 A40 -142° C2'-endo    
 46°   -38° (BI)             -50° (BI)   -75° 
    C2'-endo -114° G6 C39 -116° C2'-endo    
 37°   -36° (BI)             -62° (BI)   52° 
    C2'-endo -109° T7 A38 -95° C2'-endo    
 31°   -39° (BI)             -49° (BI)   53° 
    C2'-endo -104° A8 T37 -94° C2'-endo    
 27°   -88° (BI)             -65° (BI)   -58° 
    C2'-endo -77° A9 T36 -99° C3'-exo    
 52°   -30° (BI)             -57° (BI)   44° 
    C2'-endo -107° A10 T35 -106° C2'-endo    
 36°   -19° (BI)             -82° (BI)   47° 
    C2'-endo -115° A11 T34 -116° C2'-endo    
 41°   -59° (BI)             -92° (BI)   -64° 
    C2'-endo -111° A12 T33 -112° C3'-exo    
 43°   -83° (BI)             -47° (BI)   49° 
    C2'-endo -116° T13 A32 -115° C2'-endo    
 37°   -78° (BI)             -37° (BI)   42° 
    C2'-endo -110° T14 A31 -105° C2'-endo    
 30°   -42° (BI)             -71° (BI)   179° 
    C2'-endo -101° T15 A30 -134° C2'-endo    
 45°   -31° (BI)             55° (BII)   37° 
    C2'-endo -98° A16 T29 -90° C2'-endo    
 35°   -82° (BI)             -86° (BI)   39° 
    C2'-endo -95° C17 G28 -111° C2'-endo    
 45°   -33° (BI)             -48° (BI)   44° 
    C2'-endo -104° A18 T27 -108° C2'-endo    
 35°   -104° (BI)             -45° (BI)   41° 
    C2'-endo -102° T19 A26 -114° C2'-endo    
 39°   -37° (BI)             -94° (BI)   49° 
    C2'-endo -102° C20 G25 -101° C2'-endo    
 45°   -47° (BI)             -74° (BI)   -62° 
    C2'-endo -98° A21 T24 -107° C3'-exo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany