JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF A BACTERIAL QUORUM-SENSING TRANSCRIPTIO COMPLEXED WITH PHEROMONE AND DNA
PDB code 1L3L   (PDB summary)
NDB code PD0298 (NDB atlas)
Duplex length 20 base pairs
Protein Quorum-Sensing Transcription Factor, Transcription Factor, DNA binding domain: Alpha-helix, DNA binding domain: Helix-turn-helix

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' G1 A2 T3 G4 T5 G6 C7 A8 G9 A10 T11 C12 T13 G14 C15 A16 C17 A18 T19 C20 3'
Strand 2    3' C20 T19 A18 C17 A16 C15 G14 T13 C12 T11 A10 G9 A8 C7 G6 T5 G4 T3 A2 G1 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

G1 C20            
    2.9 -0.5 0.4 29° -9°
A2 T19            
    3.1 0.6 -0.4 31° -2°
T3 A18            
    3.9 0.1 -0.2 36°
G4 C17            
    3.4 -0.5 -0.5 30° -1° -2°
T5 A16            
    3.1 0.2 -0.2 33°
G6 C15            
    3.0 0.5 -0.4 24°
C7 G14            
    3.2 -0.5 0.9 42° -5° -1°
A8 T13            
    3.4 0.5 0.1 37° -1°
G9 C12            
    3.6 -0.1 -0.3 37° -1° -3°
A10 T11            
    3.1 0.1 -0.5 32°
T11 A10            
    3.6 -0.0 -0.1 37° -3°
C12 G9            
    3.4 -0.5 0.1 36° -2° -1°
T13 A8            
    3.3 0.5 0.9 40° -3°
G14 C7            
    2.7 -0.5 -0.3 27° -4°
C15 G6            
    3.2 -0.5 -0.1 29° -3°
A16 T5            
    3.4 0.8 -0.6 33°
C17 G4            
    3.9 -0.2 -0.3 31° 11° -0°
A18 T3            
    3.2 -0.3 -0.1 34° -1°
T19 A2            
    3.5 -0.0 0.4 40° -1°
C20 G1            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -121° G1 C20 -82° C2'-endo    
 45°   -68° (BI)             -86° (BI)   -49° 
    C2'-endo -99° A2 T19 -102° C3'-exo    
 -57°   -68° (BI)             -44° (BI)   39° 
    C2'-endo -105° T3 A18 -122° C2'-endo    
 37°   -103° (BI)             -45° (BI)   47° 
    C2'-endo -115° G4 C17 -108° C1'-exo    
 42°   -85° (BI)             -83° (BI)   42° 
    C2'-endo -113° T5 A16 -105° C2'-endo    
 -51°   -55° (BI)             -62° (BI)   43° 
    C2'-endo -101° G6 C15 -112° C1'-exo    
 42°   -75° (BI)             -60° (BI)   46° 
    C2'-endo -97° C7 G14 -99° C2'-endo    
 37°   75° (BII)             -61° (BI)   47° 
    C2'-endo -97° A8 T13 -109° C2'-endo    
 49°   -81° (BI)             -66° (BI)   51° 
    C2'-endo -97° G9 C12 -122° C2'-endo    
 57°   -69° (BI)             -91° (BI)   36° 
    C2'-endo -118° A10 T11 -107° C1'-exo    
 -66°   -57° (BI)             -86° (BI)   47° 
    C2'-endo -107° T11 A10 -116° C2'-endo    
 50°   -94° (BI)             -50° (BI)   54° 
    C2'-endo -117° C12 G9 -106° C2'-endo    
 46°   -62° (BI)             -85° (BI)   44° 
    C2'-endo -107° T13 A8 -103° C2'-endo    
 46°   -72° (BI)             22° (BII)   -52° 
    C2'-endo -98° G14 C7 -86° C2'-endo    
 -58°   -53° (BI)             -51° (BI)   37° 
    C2'-endo -96° C15 G6 -106° C2'-endo    
 51°   -74° (BI)             -84° (BI)   39° 
    C2'-endo -107° A16 T5 -117° C2'-endo    
 -59°   -54° (BI)             -78° (BI)   34° 
    C2'-endo -105° C17 G4 -116° C2'-endo    
 41°   -75° (BI)             -86° (BI)   47° 
    C2'-endo -122° A18 T3 -112° C1'-exo    
 47°   -56° (BI)             -90° (BI)   51° 
    C2'-endo -114° T19 A2 -109° C2'-endo    
 59°   -56° (BI)             -72° (BI)   63° 
    C2'-endo -119° C20 G1 -116° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany