JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF THE DNA-BINDING DOMAIN OF OCT-1 BOUND T DIMER
PDB code 1HF0   (PDB summary)
NDB code PD0274 (NDB atlas)
Duplex length 22 base pairs
Protein OCT-1, Transcription Factor, DNA binding domain: Alpha-helix, DNA binding domain: Helix-turn-helix, POU domain

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' C1 A2 C3 A4 T5 T6 T7 G8 A9 A10 A11 G12 G13 C14 A15 A16 A17 T18 G19 G20 A21 G22 3'
Strand 2    3' G22 T21 G20 T19 A18 A17 A16 C15 T14 T13 T12 C11 C10 G9 T8 T7 T6 A5 C4 C3 T2 C1 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

C1 G22            
    3.1 -0.3 0.2 36° -5°
A2 T21            
    3.2 0.6 -0.3 33°
C3 G20            
    3.5 -0.2 -0.1 36° -3°
A4 T19            
    3.4 0.4 -0.3 34° -1° -1°
T5 A18            
    3.2 -0.3 -0.3 36° -2°
T6 A17            
    3.3 1.0 0.3 42° -3°
T7 A16            
    3.7 -0.5 0.0 34°
G8 C15            
    2.9 -0.8 1.0 39° -11° -9°
A9 T14            
    3.3 1.1 -0.1 35° -4° -2°
A10 T13            
    3.2 0.1 -0.2 39° -2°
A11 T12            
    3.6 -0.6 -0.3 37°
G12 C11            
    3.2 -0.9 0.2 36° -1° -5°
G13 C10            
    3.2 0.7 0.1 36° -7°
C14 G9            
    3.2 0.9 -0.3 30° -0°
A15 T8            
    3.3 -1.2 0.3 39° -5°
A16 T7            
    3.5 0.4 -0.0 38° -4° -0°
A17 T6            
    3.1 -0.3 -0.5 31°
T18 A5            
    3.4 0.2 0.1 35° -1°
G19 C4            
    3.2 -0.7 0.3 36° -2°
G20 C3            
    3.0 0.3 -0.0 33°
A21 T2            
    3.7 -0.1 -0.5 36°
G22 C1            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    O1'-endo -149° C1 G22 -106° C2'-endo    
 56°   -73° (BI)             -45° (BI)   42° 
    C2'-endo -121° A2 T21 -113° C2'-endo    
 41°   -65° (BI)             -52° (BI)   41° 
    C1'-exo -104° C3 G20 -119° C2'-endo    
 44°   -73° (BI)             -65° (BI)   39° 
    C2'-endo -106° A4 T19 -120° C2'-endo    
 43°   -74° (BI)             -57° (BI)   50° 
    C2'-endo -119° T5 A18 -121° C2'-endo    
 52°   -56° (BI)             -76° (BI)   42° 
    C2'-endo -115° T6 A17 -105° C2'-endo    
 40°   -88° (BI)             71° (BII)   33° 
    C1'-exo -94° T7 A16 -92° C2'-endo    
 44°   -43° (BI)             -6° (BI)   39° 
    C2'-endo -102° G8 C15 -77° C2'-endo    
 44°   6° (BI)             -24° (BI)   39° 
    C2'-endo -101° A9 T14 -104° C2'-endo    
 48°   -84° (BI)             15° (BI)   49° 
    C2'-endo -105° A10 T13 -99° C2'-endo    
 48°   -63° (BI)             -65° (BI)   52° 
    C2'-endo -99° A11 T12 -110° C2'-endo    
 30°   -32° (BI)             -69° (BI)   49° 
    C2'-endo -99° G12 C11 -103° C1'-exo    
 47°   -61° (BI)             -66° (BI)   32° 
    C2'-endo -105° G13 C10 -105° C2'-endo    
 40°   -58° (BI)             63° (BII)   51° 
    C2'-endo -102° C14 G9 -98° C2'-endo    
 49°   -75° (BI)             -53° (BI)   46° 
    C2'-endo -99° A15 T8 -111° C1'-exo    
 39°   87° (BII)             -74° (BI)   50° 
    C2'-endo -109° A16 T7 -117° C2'-endo    
 54°   -102° (BI)             -32° (BI)   43° 
    C2'-endo -110° A17 T6 -108° C1'-exo    
 37°   -76° (BI)             -83° (BI)   44° 
    C2'-endo -102° T18 A5 -103° C2'-endo    
 30°   -1° (BI)             -76° (BI)   33° 
    C2'-endo -104° G19 C4 -95° C2'-endo    
 40°   -30° (BI)             -68° (BI)   47° 
    C2'-endo -107° G20 C3 -115° C2'-endo    
 53°   -87° (BI)             -72° (BI)   35° 
    C2'-endo -103° A21 T2 -141° C1'-exo    
 54°   -58° (BI)             -100° (BI)   31° 
    C2'-endo -113° G22 C1 -139° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany