JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF VDR DNA-BINDING DOMAIN BOUND TO MOUSE OSTEOPONTIN (SPP) RESPONSE ELEMENT
PDB code 1KB2   (PDB summary)
NDB code PD0268 (NDB atlas)
Duplex length 18 base pairs
Protein VDR (vitamin D receptor) DNA-BINDING DOMAIN, Transcription Factor, DNA binding domain: Zinc finger, DNA binding domain: Zinc finger

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' C401 A402 C403 G404 G405 T406 T407 C408 A409 C410 G411 A412 G413 G414 T415 T416 C417 A418 3'
Strand 2    3' G436 T435 G434 C433 C432 A431 A430 G429 T428 G427 C426 T425 C424 C423 A422 A421 G420 T419 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

C401 G436            
    3.6 -0.1 0.1 41° -6°
A402 T435            
    3.2 0.4 0.2 30° -6°
C403 G434            
    3.6 -0.7 0.3 38° -8°
G404 C433            
    3.6 1.0 -0.7 33°
G405 C432            
    3.2 -0.9 -0.5 30° -2°
T406 A431            
    3.3 -0.1 -0.1 38° -1° -2°
T407 A430            
    3.5 0.8 0.3 32°
C408 G429            
    3.0 -0.2 0.8 37° -2° -4°
A409 T428            
    3.4 0.2 -0.8 34° -5° -0°
C410 G427            
    3.9 0.1 0.6 45° -3°
G411 C426            
    3.1 0.1 0.4 27° -4°
A412 T425            
    3.2 -0.8 -0.3 37° -9°
G413 C424            
    3.7 0.6 -0.4 33°
G414 C423            
    3.4 -0.1 -0.6 34° -3°
T415 A422            
    3.3 -0.3 -0.1 36°
T416 A421            
    3.5 0.9 0.6 34° -4°
C417 G420            
    3.2 -0.1 0.2 37° -3°
A418 T419            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -128° C401 G436 -101° C2'-endo    
 59°   -94° (BI)             -37° (BI)   54° 
    C2'-endo -102° A402 T435 -101° C2'-endo    
 48°   -81° (BI)             -53° (BI)   -42° 
    C1'-exo -93° C403 G434 -93° C3'-exo    
 174°   47° (BII)             -35° (BI)   50° 
    C4'-exo -175° G404 C433 -114° C2'-endo    
 49°   -59° (BI)             -38° (BI)   39° 
    C2'-endo -138° G405 C432 -105° C1'-exo    
 43°   -76° (BI)             -97° (BI)   -50° 
    C2'-endo -101° T406 A431 -101° C3'-exo    
 35°   -90° (BI)             -53° (BI)   42° 
    C2'-endo -100° T407 A430 -98° C2'-endo    
 36°   -79° (BI)             45° (BII)   48° 
    C2'-endo -81° C408 G429 -85° C2'-endo    
 47°   61° (BII)             -67° (BI)   -53° 
    C2'-endo -95° A409 T428 -116° C3'-exo    
 39°   -68° (BI)             -43° (BI)   46° 
    C2'-endo -92° C410 G427 -112° C2'-endo    
 55°   -19° (BI)             132° (BII)   49° 
    C2'-endo -111° G411 C426 -79° C2'-endo    
 60°   -74° (BI)             -83° (BI)   -59° 
    C2'-endo -97° A412 T425 -97° C3'-exo    
 46°   26° (BII)             -50° (BI)   45° 
    O1'-endo -144° G413 C424 -111° C2'-endo    
 54°   -72° (BI)             -37° (BI)   43° 
    C2'-endo -131° G414 C423 -102° C2'-endo    
 51°   -75° (BI)             -87° (BI)   28° 
    C2'-endo -115° T415 A422 -88° C2'-endo    
 -41°   -50° (BI)             -95° (BI)   54° 
    C3'-exo -98° T416 A421 -104° C2'-endo    
 45°   -82° (BI)             57° (BII)   62° 
    C2'-endo -86° C417 G420 -86° C2'-endo    
 49°   -11° (BI)             -81° (BI)   -46° 
    C2'-endo -95° A418 T419 -121° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany