JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title STRUCTURE OF A HAP1/DNA COMPLEX REVEALS DRAMATICALLY ASYMMETRIC DNA BINDING BY A HOMODIMERIC PROTEIN
PDB code 1HWT   (PDB summary)
NDB code PD0089 (NDB atlas)
Duplex length 20 base pairs
Protein Heme activator protein, Transcription factor, DNA binding domain: Zn2-Cys6 binuclear cluster

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' G1 C2 G3 C4 T5 A6 T7 T8 A9 T10 C11 G12 C13 T14 A15 T16 T17 A18 G19 C20 3'
Strand 2    3' C20 G19 C18 G17 A16 T15 A14 A13 T12 A11 G10 C9 G8 A7 T6 A5 A4 T3 C2 G1 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

G1 C20            
    3.0 0.7 -0.5 35° -1°
C2 G19            
    3.6 -1.3 0.3 39° -6°
G3 C18            
    3.5 1.1 0.1 36° -5°
C4 G17            
    3.2 -0.3 0.1 29° -2°
T5 A16            
    3.5 -0.2 0.3 48° -6°
A6 T15            
    3.1 0.7 -0.2 35° -6° -2°
T7 A14            
    3.4 -0.5 -0.6 34° -1°
T8 A13            
    3.4 1.0 0.4 40° -0°
A9 T12            
    3.4 -1.6 -0.2 36° -3° -2°
T10 A11            
    3.6 1.3 0.8 41° -3°
C11 G10            
    3.3 -1.4 0.6 38° -2° -6°
G12 C9            
    3.5 1.0 -0.5 31° -5° -2°
C13 G8            
    3.1 -0.7 -0.3 32° -6°
T14 A7            
    3.5 -0.3 0.1 44° -5°
A15 T6            
    3.2 0.6 -0.6 25° -3°
T16 A5            
    3.6 -0.3 0.1 42° -0° -6°
T17 A4            
    3.2 -0.2 -0.1 36° -0°
A18 T3            
    3.5 1.1 0.0 34°
G19 C2            
    3.4 -0.7 -0.1 39° 13° -1°
C20 G1            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C2'-endo -124° G1 C20 -95° C2'-endo    
 37°   -78° (BI)             -53° (BI)   38° 
    C2'-endo -111° C2 G19 -89° C2'-endo    
 44°   -11° (BI)             -77° (BI)   42° 
    C2'-endo -101° G3 C18 -103° C2'-endo    
 21°   -84° (BI)             53° (BII)   41° 
    C2'-endo -94° C4 G17 -81° C2'-endo    
 56°   -74° (BI)             -94° (BI)   42° 
    C2'-endo -103° T5 A16 -90° C3'-exo    
 49°   -65° (BI)             -82° (BI)   60° 
    C3'-exo -95° A6 T15 -120° C2'-endo    
 40°   -91° (BI)             -43° (BI)   33° 
    C1'-exo -105° T7 A14 -96° C2'-endo    
 43°   -91° (BI)             -103° (BI)   54° 
    C2'-endo -111° T8 A13 -104° C2'-endo    
 46°   -65° (BI)             -29° (BI)   41° 
    C2'-endo -93° A9 T12 -90° C2'-endo    
 51°   -44° (BI)             -100° (BI)   45° 
    C2'-endo -103° T10 A11 -88° C2'-endo    
 26°   -71° (BI)             -19° (BI)   38° 
    C2'-endo -74° C11 G10 -84° C2'-endo    
 49°   -37° (BI)             -86° (BI)   52° 
    C2'-endo -95° G12 C9 -111° C2'-endo    
 24°   -90° (BI)             -91° (BI)   28° 
    C2'-endo -97° C13 G8 -97° C1'-exo    
 47°   -98° (BI)             -99° (BI)   49° 
    C2'-endo -99° T14 A7 -105° C2'-endo    
 46°   -101° (BI)             -108° (BI)   36° 
    C2'-endo -102° A15 T6 -97° C2'-endo    
 42°   -100° (BI)             -93° (BI)   44° 
    C2'-endo -105° T16 A5 -97° C2'-endo    
 50°   -75° (BI)             -100° (BI)   46° 
    C2'-endo -113° T17 A4 -112° C2'-endo    
 40°   -88° (BI)             -100° (BI)   50° 
    C2'-endo -98° A18 T3 -100° C2'-endo    
 42°   -106° (BI)             -58° (BI)   40° 
    C2'-endo -102° G19 C2 -106° C2'-endo    
 43°   -86° (BI)             -88° (BI)   38° 
    C2'-endo -110° C20 G1 -111° C2'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany