JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF AN RNA HELIX RECOGNIZED BY A ZINC- FINGER PROTEIN: AN 18 BASE PAIR DUPLEX AT 1.6 RESOLUTION
PDB code 1KFO   (PDB summary)
NDB code AR0039 (NDB atlas)
Duplex length 18 base pairs
Protein Zinc-Finger Protein, RNA binding domain: Zinc finger, RNA binding domain: Zinc finger

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' G1 A2 A3 U4 G5 C6 C7 U8 G9 C10 G11 A12 G13 C14 A15 +U16 C17 C18 3'
Strand 2    3' C18 C17 +U16 A15 C14 G13 A12 G11 C10 G9 U8 C7 C6 G5 U4 A3 A2 G1 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

G1 C18            
    2.2 0.3 -0.7 29° -10°
A2 C17            
    3.2 -0.1 0.6 38° -2° -2°
A3 +U16            
    3.0 0.6 -0.2 32° -1° -3°
U4 A15            
    2.8 -0.4 -0.3 33° -3°
G5 C14            
    2.8 -0.3 -0.3 32° -4°
C6 G13            
    3.0 0.2 0.5 39° -5°
C7 A12            
    2.5 -0.1 0.2 34°
U8 G11            
    3.0 0.0 -1.4 18° 10° -0°
G9 C10            
    3.2 0.0 -0.3 31°
C10 G9            
    3.0 -0.0 -1.4 18° 10°
G11 U8            
    2.5 0.1 0.2 34° -4°
A12 C7            
    3.0 -0.2 0.5 39°
G13 C6            
    2.8 0.3 -0.3 32°
C14 G5            
    2.8 0.4 -0.3 33°
A15 U4            
    3.0 -0.6 -0.2 32° -1°
+U16 A3            
    3.2 0.1 0.6 38° -2°
C17 A2            
    2.2 -0.3 -0.7 29° 10°
C18 G1            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C3'-endo -179° G1 C18 -140° C3'-endo    
 48°   -85° (BI)             -73° (BI)   56° 
    C3'-endo -155° A2 C17 -160° C3'-endo    
 55°   -74° (BI)             -79° (BI)   54° 
    C3'-endo -161° A3 +U16 -157° C3'-endo    
 53°   -66° (BI)             -82° (BI)   54° 
    C3'-endo -160° U4 A15 -163° C3'-endo    
 49°   -69° (BI)             -79° (BI)   61° 
    C3'-endo -163° G5 C14 -164° C3'-endo    
 52°   -83° (BI)             -79° (BI)   52° 
    C3'-endo -161° C6 G13 -161° C3'-endo    
 53°   -81° (BI)             -82° (BI)   48° 
    C3'-endo -160° C7 A12 -165° C3'-endo    
 50°   -70° (BI)             -90° (BI)   59° 
    C3'-endo -151° U8 G11 -171° C3'-endo    
 173°   -99° (BI)             -87° (BI)   47° 
    C3'-endo -177° G9 C10 -164° C3'-endo    
 47°   -74° (BI)             -74° (BI)   173° 
    C3'-endo -164° C10 G9 -177° C3'-endo    
 59°   -87° (BI)             -99° (BI)   50° 
    C3'-endo -171° G11 U8 -151° C3'-endo    
 48°   -90° (BI)             -70° (BI)   53° 
    C3'-endo -165° A12 C7 -160° C3'-endo    
 52°   -82° (BI)             -81° (BI)   52° 
    C3'-endo -161° G13 C6 -161° C3'-endo    
 61°   -79° (BI)             -83° (BI)   49° 
    C3'-endo -164° C14 G5 -163° C3'-endo    
 54°   -79° (BI)             -69° (BI)   53° 
    C3'-endo -163° A15 U4 -160° C3'-endo    
 54°   -82° (BI)             -66° (BI)   55° 
    C3'-endo -157° +U16 A3 -161° C3'-endo    
 56°   -79° (BI)             -74° (BI)   48° 
    C3'-endo -160° C17 A2 -155° C3'-endo    
 46°   -73° (BI)             -85° (BI)   -169° 
    C3'-endo -140° C18 G1 -179° C3'-endo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany