JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

PDB code 1GXP   (PDB summary)
Duplex length 22 base pairs
Protein PHOB EFFECTOR DOMAIN Phosphate Regulon Transcriptional Regulatory Protein, Transcription Factor, DNA binding domain: Alpha-helix|beta-barrel, DNA binding domain: Helix-Winged-Helix

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' A2 G3 C4 T5 G6 T7 C8 A9 T10 A11 A12 A13 G14 T15 T16 G17 T18 C19 A20 C21 G22 G23 3'
Strand 2    3' T23 C22 G21 A20 C19 A18 G17 T16 A15 T14 T13 T12 C11 A10 A9 C8 A7 G6 T5 G4 C3 C2 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

A2 T23            
    3.4 -0.1 1.0 45° -16° -11°
G3 C22            
    3.9 0.4 -0.6 33°
C4 G21            
    3.2 -0.8 -0.3 30° -3°
T5 A20            
    3.9 0.3 0.5 34° 14° -2°
G6 C19            
    3.7 -0.4 -0.9 29°
T7 A18            
    3.5 -0.1 -0.6 33°
C8 G17            
    3.0 0.1 0.9 38° -1°
A9 T16            
    3.3 -0.0 -0.4 30°
T10 A15            
    3.5 0.1 0.2 38° -6°
A11 T14            
    3.5 -0.2 -0.2 36°
A12 T13            
    3.1 0.1 0.2 38° -1° -6°
A13 T12            
    3.5 0.3 0.1 34° -4°
G14 C11            
    3.4 -0.5 -1.0 32°
T15 A10            
    3.4 -0.2 -0.1 35°
T16 A9            
    3.5 0.4 1.0 37° -1°
G17 C8            
    2.9 -0.4 -0.3 21°
T18 A7            
    3.9 -0.2 -0.7 39° -4° -6°
C19 G6            
    3.1 0.0 0.8 36° -0°
A20 T5            
    3.3 0.2 -0.6 31° -2°
C21 G4            
    3.4 -0.4 0.2 35° -0°
G22 C3            
    3.3 0.1 -0.1 31°
G23 C2            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C3'-exo -86° A2 T23 -78° C3'-exo    
 42°   -54° (BI)             -56° (BI)   51° 
    C2'-endo -85° G3 C22 -114° C2'-endo    
 -63°   -64° (BI)             -90° (BI)   39° 
    C3'-exo -112° C4 G21 -86° C3'-exo    
 26°   -83° (BI)             -116° (BI)   40° 
    C2'-endo -97° T5 A20 -95° C2'-endo    
 45°   -39° (BI)             -63° (BI)   17° 
    C2'-endo -105° G6 C19 -100° C2'-endo    
 -78°   -25° (BI)             -122° (BI)   27° 
    C3'-exo -121° T7 A18 -100° C3'-exo    
 -56°   -59° (BI)             -105° (BI)   43° 
    C3'-exo -120° C8 G17 -85° C3'-exo    
 45°   -83° (BI)             -81° (BI)   -66° 
    C3'-exo -88° A9 T16 -109° C3'-exo    
 28°   -130° (BI)             -51° (BI)   44° 
    C3'-exo -77° T10 A15 -99° C3'-exo    
 46°   -118° (BI)             -107° (BI)   -67° 
    C3'-exo -104° A11 T14 -109° C3'-exo    
 -60°   -56° (BI)             -64° (BI)   -63° 
    C3'-exo -109° A12 T13 -97° C3'-exo    
 -44°   -76° (BI)             -44° (BI)   48° 
    C3'-exo -103° A13 T12 -100° C3'-exo    
 45°   -94° (BI)             -79° (BI)   -74° 
    C2'-endo -96° G14 C11 -117° C3'-exo    
 -60°   -39° (BI)             -61° (BI)   48° 
    C3'-exo -116° T15 A10 -105° C3'-exo    
 -50°   -64° (BI)             -88° (BI)   35° 
    C3'-exo -98° T16 A9 -85° C2'-endo    
 44°   -69° (BI)             2° (BI)   19° 
    C3'-exo -95° G17 C8 -80° C2'-endo    
 -36°   -34° (BI)             -108° (BI)   -60° 
    C2'-endo -71° T18 A7 -120° C3'-exo    
 -62°   -170° (BII)             -66° (BI)   44° 
    C3'-exo -117° C19 G6 -87° C2'-endo    
 38°   -94° (BI)             -72° (BI)   -63° 
    C3'-exo -86° A20 T5 -116° C3'-exo    
 37°   -139° (BI)             -56° (BI)   45° 
    C3'-exo -82° C21 G4 -95° C3'-exo    
 34°   -76° (BI)             -116° (BI)   -64° 
    C2'-endo -90° G22 C3 -106° C3'-exo    
 -97°   -35° (BI)             -55° (BI)   48° 
    C3'-exo -115° G23 C2 -87° C3'-exo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany