JenaLib Home    
[JenaLib Home]     [Helix Analysis Home]     [Image Library Entry]     [Sequence, Chains, Units]     [Bending Analysis Entry]     [Bending Classification]   

Analysis of nucleic acid double helix geometry

Title CRYSTAL STRUCTURE OF A MAT-ALPHA2 HOMEODOMAIN-OPERATOR COMPLEX SUGGESTS A GENERAL MODEL FOR HOMEODOMAIN-DNA INTERACTIONS
PDB code 1APL   (PDB summary)
NDB code PDT005 (NDB atlas)
Duplex length 20 base pairs
Protein Mating type alpha2, Transcription factor, DNA binding domain: Helix-turn-helix, homeodomain

Only the nucleic acid double helix part of the structure is analysed here. Small ligands, proteins, and overhanging ends are not taken into account. Information on the complete structure is available at the Image Library Entry page and at the Sequence, Chains, Units page.

Strand 1    5' C2 A3 T4 G5 T6 A7 A8 T9 T10 C11 A12 T13 T14 T15 A16 C17 A18 C19 G20 C21 3'
Strand 2    3' G42 T41 A40 C39 A38 T37 T36 A35 A34 G33 T32 A31 A30 A29 T28 G27 T26 G25 C24 G23 5'

Side view 1 Top view
Side view 1 Top view
Side view 2 3-dimensional interactive models
(Help)
  

RASMOL, CHIME, VRML 2.0, PDB

Side view 2  

Figure 1   Three orthogonal views of the double helix (Help). Residues are colored according to the nucleotide type (Help: Color codes). The curvilinear helical axis (green) was calculated with CURVES. The double helix is oriented with respect to the principle axis of inertia of the curvilinear helical axis (see Help for further explanations). This drawing reveals immediately if there is any bending of the helical axis.


Analysis of helical axis bending


Inter base pair parameters

The six inter base pair parameters (rise, shift, slide, twist, roll, tilt) describe the translational and rotational displacement between neighbouring base pairs. See Help for further explanations.

Plot of inter base pair parameters with respect to global and local helical axes:  PDF,   GIF
(Global parameters from CURVES,  local parameters from CURVES and FREEHELIX)

Table 1.  Inter base pair parameters with respect to the global helical axis, calculated with CURVES.


  Strand 1      Strand 2        riseg          shiftg          slideg          twistg         rollg         tiltg    
    / Å / Å / Å      

C2 G42            
    3.1 -0.0 0.5 40° -4°
A3 T41            
    3.6 0.2 -0.3 36° -3° -1°
T4 A40            
    3.4 -0.2 0.1 31° 10°
G5 C39            
    3.2 -0.2 -0.4 28° -0° -0°
T6 A38            
    3.5 -0.4 0.1 41° -2°
A7 T37            
    2.9 0.1 0.2 34° -5°
A8 T36            
    3.8 0.3 -0.5 36° -5°
T9 A35            
    3.3 0.3 0.0 30° -2°
T10 A34            
    3.3 -0.1 0.2 42°
C11 G33            
    3.4 -0.3 0.7 28° -1°
A12 T32            
    3.1 0.2 -0.7 34° -5° -5°
T13 A31            
    3.3 -0.2 -0.0 35°
T14 A30            
    3.2 -0.1 0.6 36° -6°
T15 A29            
    3.5 0.7 0.1 37° -0°
A16 T28            
    3.4 -0.8 -0.3 33° -2°
C17 G27            
    2.9 0.5 -0.4 28° 10° -3°
A18 T26            
    3.9 -0.2 0.3 42° -10°
C19 G25            
    2.8 0.1 0.0 27° 14°
G20 C24            
    3.3 -0.0 -0.3 41°
C21 G23            


Backbone parameters

Table 2.  Selected torsional angles and sugar pucker phase angles describing the conformation of the sugar phosphate backbone. (See Help for further explanations.)


 gamma     epsilon-zeta       pucker        chi      Strand 1     Strand 2      chi        pucker       epsilon-zeta     gamma 

    C4'-exo -175° C2 G42 -114° C2'-endo    
 74°   -88° (BI)             -73° (BI)   179° 
    C2'-endo -115° A3 T41 -160° C3'-endo    
 -179°   -68° (BI)             -116° (BI)   37° 
    C4'-exo -143° T4 A40 -141° C4'-exo    
 51°   -104° (BI)             -104° (BI)   168° 
    C2'-endo -113° G5 C39 -153° C4'-exo    
 88°   -14° (BI)             -42° (BI)   78° 
    O1'-endo -128° T6 A38 -113° C1'-exo    
 70°   18° (BI)             -41° (BI)   76° 
    C2'-endo -109° A7 T37 -127° C1'-exo    
 69°   -41° (BI)             -96° (BI)   157° 
    C1'-exo -111° A8 T36 -164° O1'-endo    
 66°   -90° (BI)             31° (BII)   63° 
    C4'-exo -144° T9 A35 -119° C1'-exo    
 127°   -125° (BI)             -58° (BI)   41° 
    C4'-exo -147° T10 A34 -117° C1'-exo    
 49°   75° (BII)             178° (BII)   44° 
    C2'-endo -100° C11 G33 -96° C1'-exo    
 54°   -5° (BI)             57° (BII)   55° 
    C1'-exo -115° A12 T32 -133° C4'-exo    
 65°   -56° (BI)             -107° (BI)   -177° 
    C1'-exo -127° T13 A31 -134° C3'-exo    
 78°   -53° (BI)             -163° (BII)   40° 
    C1'-exo -125° T14 A30 -113° O1'-endo    
 79°   -78° (BI)             164° (BII)   75° 
    O1'-endo -139° T15 A29 -123° C4'-exo    
 60°   -175° (BII)             -74° (BI)   142° 
    C2'-endo -105° A16 T28 171° C4'-exo    
 166°   21° (BII)             -131° (BI)   48° 
    C4'-exo -153° C17 G27 -127° C1'-exo    
 59°   -140° (BI)             -13° (BI)   175° 
    C2'-endo -113° A18 T26 -168° C4'-exo    
 61°   -32° (BI)             66° (BII)   69° 
    C4'-exo -154° C19 G25 -118° C2'-endo    
 64°   -59° (BI)             -148° (BI)   63° 
    C2'-endo -106° G20 C24 -161° C4'-exo    
 -43°   -62° (BI)             -102° (BI)   83° 
    C3'-exo -94° C21 G23 -173° C4'-exo    


Groove width

Plot of minor groove width:   PDF,   GIF
Plot of major groove width:   PDF,   GIF
(See Help for further explanations.)

Further information

Full output from CURVES  (helical parameters with respect to global and local axes)

Full output from FREEHELIX  (helical parameters with respect to local axis, angles between normal vectors)

Chirality of ribose and phosphate atoms
Check the naming of phosphate and ribose substituents. Recommended for phosphate oxygens and for ribose hydrogens in NMR structures.


Go to    [JenaLib Home]    [Helix Analysis Home]    [Image Library Entry]    [Sequence, Chains, Units]    [Bending Analysis Entry]    [Bending Classification]   

Perl script:    helixparameter.pl  (15 Sep 2016)
Author:    Peter Slickers  (slickers@leibniz-fli.de),  IMB Jena,  Germany