molecular function |
| GO:0008094 | | DNA-dependent ATPase activity | | Catalysis of the reaction: ATP + H2O = ADP + phosphate; this reaction requires the presence of single- or double-stranded DNA, and it drives another reaction. |
| GO:0046872 | | metal ion binding | | Interacting selectively and non-covalently with any metal ion. |
| GO:0005515 | | protein binding | | Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules). |
| GO:0043565 | | sequence-specific DNA binding | | Interacting selectively and non-covalently with DNA of a specific nucleotide composition, e.g. GC-rich DNA binding, or with a specific sequence motif or type of DNA e.g. promotor binding or rDNA binding. |
| GO:0008134 | | transcription factor binding | | Interacting selectively and non-covalently with a transcription factor, any protein required to initiate or regulate transcription. |
| GO:0008270 | | zinc ion binding | | Interacting selectively and non-covalently with zinc (Zn) ions. |
biological process |
| GO:0009952 | | anterior/posterior pattern specification | | The regionalization process in which specific areas of cell differentiation are determined along the anterior-posterior axis. The anterior-posterior axis is defined by a line that runs from the head or mouth of an organism to the tail or opposite end of the organism. |
| GO:0007420 | | brain development | | The process whose specific outcome is the progression of the brain over time, from its formation to the mature structure. Brain development begins with patterning events in the neural tube and ends with the mature structure that is the center of thought and emotion. The brain is responsible for the coordination and control of bodily activities and the interpretation of information from the senses (sight, hearing, smell, etc.). |
| GO:1990090 | | cellular response to nerve growth factor stimulus | | A process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a nerve growth factor stimulus. |
| GO:0006338 | | chromatin remodeling | | Dynamic structural changes to eukaryotic chromatin occurring throughout the cell division cycle. These changes range from the local changes necessary for transcriptional regulation to global changes necessary for chromosome segregation. |
| GO:0001892 | | embryonic placenta development | | The embryonically driven process whose specific outcome is the progression of the placenta over time, from its formation to the mature structure. The placenta is an organ of metabolic interchange between fetus and mother, partly of embryonic origin and partly of maternal origin. |
| GO:0007492 | | endoderm development | | The process whose specific outcome is the progression of the endoderm over time, from its formation to the mature structure. The endoderm is the innermost germ layer that develops into the gastrointestinal tract, the lungs and associated tissues. |
| GO:0000122 | | negative regulation of transcription from RNA polymerase II promoter | | Any process that stops, prevents, or reduces the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0045893 | | positive regulation of transcription, DNA-templated | | Any process that activates or increases the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0006355 | | regulation of transcription, DNA-templated | | Any process that modulates the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0009611 | | response to wounding | | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to the organism. |
| GO:0006351 | | transcription, DNA-templated | | The cellular synthesis of RNA on a template of DNA. |
cellular component |
| GO:0016589 | | NURF complex | | An ISWI complex that contains an ATPase subunit of the ISWI family (SNF2L in mammals), a NURF301 homolog (BPTF in humans), and additional subunits, though the composition of these additional subunits varies slightly with species. NURF is involved in regulation of transcription from TRNA polymerase II promoters. |
| GO:0044297 | | cell body | | The portion of a cell bearing surface projections such as axons, dendrites, cilia, or flagella that includes the nucleus, but excludes all cell projections. |
| GO:0005737 | | cytoplasm | | All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. |
| GO:0030425 | | dendrite | | A neuron projection that has a short, tapering, often branched, morphology, receives and integrates signals from other neurons or from sensory stimuli, and conducts a nerve impulse towards the axon or the cell body. In most neurons, the impulse is conveyed from dendrites to axon via the cell body, but in some types of unipolar neuron, the impulse does not travel via the cell body. |
| GO:0070062 | | extracellular exosome | | A vesicle that is released into the extracellular region by fusion of the limiting endosomal membrane of a multivesicular body with the plasma membrane. Extracellular exosomes, also simply called exosomes, have a diameter of about 40-100 nm. |
| GO:0043005 | | neuron projection | | A prolongation or process extending from a nerve cell, e.g. an axon or dendrite. |
| GO:0005654 | | nucleoplasm | | That part of the nuclear content other than the chromosomes or the nucleolus. |
| GO:0005634 | | nucleus | | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. |
| GO:0048471 | | perinuclear region of cytoplasm | | Cytoplasm situated near, or occurring around, the nucleus. |