molecular function |
| GO:0008094 | | DNA-dependent ATPase activity | | Catalysis of the reaction: ATP + H2O = ADP + phosphate; this reaction requires the presence of single- or double-stranded DNA, and it drives another reaction. |
| GO:0008353 | | RNA polymerase II carboxy-terminal domain kinase activity | | Catalysis of the reaction: ATP + (DNA-directed RNA polymerase II) = ADP + phospho-(DNA-directed RNA polymerase II); phosphorylation occurs on residues in the carboxy-terminal domain (CTD) repeats. |
| GO:0003682 | | chromatin binding | | Interacting selectively and non-covalently with chromatin, the network of fibers of DNA, protein, and sometimes RNA, that make up the chromosomes of the eukaryotic nucleus during interphase. |
| GO:0005515 | | protein binding | | Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules). |
| GO:0004672 | | protein kinase activity | | Catalysis of the phosphorylation of an amino acid residue in a protein, usually according to the reaction: a protein + ATP = a phosphoprotein + ADP. |
biological process |
| GO:0006370 | | 7-methylguanosine mRNA capping | | Addition of the 7-methylguanosine cap to the 5' end of a nascent messenger RNA transcript. |
| GO:0006281 | | DNA repair | | The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. |
| GO:0006974 | | cellular response to DNA damage stimulus | | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism. |
| GO:0070911 | | global genome nucleotide-excision repair | | The nucleotide-excision repair process in which DNA lesions are removed from nontranscribed strands and from transcriptionally silent regions over the entire genome. |
| GO:0006289 | | nucleotide-excision repair | | A DNA repair process in which a small region of the strand surrounding the damage is removed from the DNA helix as an oligonucleotide. The small gap left in the DNA helix is filled in by the sequential action of DNA polymerase and DNA ligase. Nucleotide excision repair recognizes a wide range of substrates, including damage caused by UV irradiation (pyrimidine dimers and 6-4 photoproducts) and chemicals (intrastrand cross-links and bulky adducts). |
| GO:0000717 | | nucleotide-excision repair, DNA duplex unwinding | | The unwinding, or local denaturation, of the DNA duplex to create a bubble around the site of the DNA damage. |
| GO:0033683 | | nucleotide-excision repair, DNA incision | | A process that results in the endonucleolytic cleavage of the damaged strand of DNA. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. |
| GO:0006295 | | nucleotide-excision repair, DNA incision, 3'-to lesion | | The endonucleolytic cleavage of the damaged strand of DNA 3' to the site of damage. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The incision precedes the incision formed 5' to the site of damage. |
| GO:0006296 | | nucleotide-excision repair, DNA incision, 5'-to lesion | | The endonucleolytic cleavage of the damaged strand of DNA 5' to the site of damage. The incision occurs at the junction of single-stranded DNA and double-stranded DNA that is formed when the DNA duplex is unwound. The incision follows the incision formed 3' to the site of damage. |
| GO:0006294 | | nucleotide-excision repair, preincision complex assembly | | The aggregation, arrangement and bonding together of proteins on DNA to form the multiprotein complex involved in damage recognition, DNA helix unwinding, and endonucleolytic cleavage at the site of DNA damage. This assembly occurs before the phosphodiester backbone of the damaged strand is cleaved 3' and 5' of the site of DNA damage. |
| GO:0006293 | | nucleotide-excision repair, preincision complex stabilization | | The stabilization of the multiprotein complex involved in damage recognition, DNA helix unwinding, and endonucleolytic cleavage at the site of DNA damage as well as the unwound DNA. The stabilization of the protein-DNA complex ensures proper positioning of the preincision complex before the phosphodiester backbone of the damaged strand is cleaved 3' and 5' of the site of DNA damage. |
| GO:0045944 | | positive regulation of transcription from RNA polymerase II promoter | | Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0006468 | | protein phosphorylation | | The process of introducing a phosphate group on to a protein. |
| GO:0000079 | | regulation of cyclin-dependent protein serine/threonine kinase activity | | Any process that modulates the frequency, rate or extent of cyclin-dependent protein serine/threonine kinase activity. |
| GO:0006355 | | regulation of transcription, DNA-templated | | Any process that modulates the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0006363 | | termination of RNA polymerase I transcription | | The process in which the synthesis of an RNA molecule by RNA polymerase I using a DNA template is completed. RNAP I termination requires binding of a terminator protein so specific sequences downstream of the transcription unit. |
| GO:0006362 | | transcription elongation from RNA polymerase I promoter | | The extension of an RNA molecule after transcription initiation and promoter clearance at an RNA polymerase I specific promoter by the addition of ribonucleotides catalyzed by RNA polymerase I. |
| GO:0006368 | | transcription elongation from RNA polymerase II promoter | | The extension of an RNA molecule after transcription initiation and promoter clearance at an RNA polymerase II promoter by the addition of ribonucleotides catalyzed by RNA polymerase II. |
| GO:0006366 | | transcription from RNA polymerase II promoter | | The synthesis of RNA from a DNA template by RNA polymerase II, originating at an RNA polymerase II promoter. Includes transcription of messenger RNA (mRNA) and certain small nuclear RNAs (snRNAs). |
| GO:0006361 | | transcription initiation from RNA polymerase I promoter | | Any process involved in the assembly of the RNA polymerase I preinitiation complex (PIC) at an RNA polymerase I promoter region of a DNA template, resulting in the subsequent synthesis of RNA from that promoter. The initiation phase includes PIC assembly and the formation of the first few bonds in the RNA chain, including abortive initiation, which occurs when the first few nucleotides are repeatedly synthesized and then released. Promoter clearance, or release, is the transition between the initiation and elongation phases of transcription. |
| GO:0006367 | | transcription initiation from RNA polymerase II promoter | | Any process involved in the assembly of the RNA polymerase II preinitiation complex (PIC) at an RNA polymerase II promoter region of a DNA template, resulting in the subsequent synthesis of RNA from that promoter. The initiation phase includes PIC assembly and the formation of the first few bonds in the RNA chain, including abortive initiation, which occurs when the first few nucleotides are repeatedly synthesized and then released. Promoter clearance, or release, is the transition between the initiation and elongation phases of transcription. |
| GO:0006351 | | transcription, DNA-templated | | The cellular synthesis of RNA on a template of DNA. |
| GO:0006283 | | transcription-coupled nucleotide-excision repair | | The nucleotide-excision repair process that carries out preferential repair of DNA lesions on the actively transcribed strand of the DNA duplex. In addition, the transcription-coupled nucleotide-excision repair pathway is required for the recognition and repair of a small subset of lesions that are not recognized by the global genome nucleotide excision repair pathway. |
cellular component |
| GO:0000439 | | core TFIIH complex | | The 7 subunit core of TFIIH that is a part of either the general transcription factor holo-TFIIH or the nucleotide-excision repair factor 3 complex. In S. cerevisiae/humans the complex is composed of: Ssl2/XPB, Tfb1/p62, Tfb2/p52, Ssl1/p44, Tfb4/p34, Tfb5/p8 and Rad3/XPD. |
| GO:0005675 | | holo TFIIH complex | | A complex that is capable of kinase activity directed towards the C-terminal Domain (CTD) of the largest subunit of RNA polymerase II and is essential for initiation at RNA polymerase II promoters in vitro. It is composed of the core TFIIH complex and the TFIIK complex. |
| GO:0005654 | | nucleoplasm | | That part of the nuclear content other than the chromosomes or the nucleolus. |
| GO:0005634 | | nucleus | | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. |