Asymmetric Unit(hide GO term definitions)
Chain A,B ( RIOX1_HUMAN | Q9H6W3)
molecular function |
| GO:0051213 | | dioxygenase activity | | Catalysis of an oxidation-reduction (redox) reaction in which both atoms of oxygen from one molecule of O2 are incorporated into the (reduced) product(s) of the reaction. The two atoms of oxygen may be distributed between two different products. |
| GO:0051864 | | histone demethylase activity (H3-K36 specific) | | Catalysis of the reaction: histone H3 N6-methyl-L-lysine (position 36) + alpha-ketoglutarate + O2 = succinate + CO2 + formaldehyde + lysine. This reaction is the removal of a methyl group from lysine at position 36 of the histone H3 protein. |
| GO:0032453 | | histone demethylase activity (H3-K4 specific) | | Catalysis of the removal of a methyl group from lysine at position 4 of the histone H3 protein. |
| GO:0005506 | | iron ion binding | | Interacting selectively and non-covalently with iron (Fe) ions. |
| GO:0046872 | | metal ion binding | | Interacting selectively and non-covalently with any metal ion. |
| GO:0016491 | | oxidoreductase activity | | Catalysis of an oxidation-reduction (redox) reaction, a reversible chemical reaction in which the oxidation state of an atom or atoms within a molecule is altered. One substrate acts as a hydrogen or electron donor and becomes oxidized, while the other acts as hydrogen or electron acceptor and becomes reduced. |
| GO:0016706 | | oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, 2-oxoglutarate as one donor, and incorporation of one atom each of oxygen into both donors | | Catalysis of the reaction: A + 2-oxoglutarate + O2 = B + succinate + CO2. This is an oxidation-reduction (redox) reaction in which hydrogen or electrons are transferred from 2-oxoglutarate and one other donor, and one atom of oxygen is incorporated into each donor. |
| GO:0005515 | | protein binding | | Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules). |
biological process |
| GO:0070544 | | histone H3-K36 demethylation | | The modification of histone H3 by the removal of a methyl group from lysine at position 36 of the histone. |
| GO:0034720 | | histone H3-K4 demethylation | | The modification of histone H3 by the removal of a methyl group from lysine at position 4 of the histone. |
| GO:0045668 | | negative regulation of osteoblast differentiation | | Any process that stops, prevents, or reduces the frequency, rate or extent of osteoblast differentiation. |
| GO:0045892 | | negative regulation of transcription, DNA-templated | | Any process that stops, prevents, or reduces the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0055114 | | oxidation-reduction process | | A metabolic process that results in the removal or addition of one or more electrons to or from a substance, with or without the concomitant removal or addition of a proton or protons. |
| GO:0006355 | | regulation of transcription, DNA-templated | | Any process that modulates the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0006351 | | transcription, DNA-templated | | The cellular synthesis of RNA on a template of DNA. |
cellular component |
| GO:0005730 | | nucleolus | | A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome. |
| GO:0005654 | | nucleoplasm | | That part of the nuclear content other than the chromosomes or the nucleolus. |
| GO:0005634 | | nucleus | | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. |
Chain C,D ( RL8_HUMAN | P62917)
molecular function |
| GO:0003723 | | RNA binding | | Interacting selectively and non-covalently with an RNA molecule or a portion thereof. |
| GO:0019843 | | rRNA binding | | Interacting selectively and non-covalently with ribosomal RNA. |
| GO:0003735 | | structural constituent of ribosome | | The action of a molecule that contributes to the structural integrity of the ribosome. |
biological process |
| GO:0006614 | | SRP-dependent cotranslational protein targeting to membrane | | The targeting of proteins to a membrane that occurs during translation and is dependent upon two key components, the signal-recognition particle (SRP) and the SRP receptor. SRP is a cytosolic particle that transiently binds to the endoplasmic reticulum (ER) signal sequence in a nascent protein, to the large ribosomal unit, and to the SRP receptor in the ER membrane. |
| GO:0002181 | | cytoplasmic translation | | The chemical reactions and pathways resulting in the formation of a protein in the cytoplasm. This is a ribosome-mediated process in which the information in messenger RNA (mRNA) is used to specify the sequence of amino acids in the protein. |
| GO:0000184 | | nuclear-transcribed mRNA catabolic process, nonsense-mediated decay | | The nonsense-mediated decay pathway for nuclear-transcribed mRNAs degrades mRNAs in which an amino-acid codon has changed to a nonsense codon; this prevents the translation of such mRNAs into truncated, and potentially harmful, proteins. |
| GO:0006364 | | rRNA processing | | Any process involved in the conversion of a primary ribosomal RNA (rRNA) transcript into one or more mature rRNA molecules. |
| GO:0006412 | | translation | | The cellular metabolic process in which a protein is formed, using the sequence of a mature mRNA or circRNA molecule to specify the sequence of amino acids in a polypeptide chain. Translation is mediated by the ribosome, and begins with the formation of a ternary complex between aminoacylated initiator methionine tRNA, GTP, and initiation factor 2, which subsequently associates with the small subunit of the ribosome and an mRNA or circRNA. Translation ends with the release of a polypeptide chain from the ribosome. |
| GO:0006413 | | translational initiation | | The process preceding formation of the peptide bond between the first two amino acids of a protein. This includes the formation of a complex of the ribosome, mRNA or circRNA, and an initiation complex that contains the first aminoacyl-tRNA. |
| GO:0019083 | | viral transcription | | The process by which a viral genome, or part of a viral genome, is transcribed within the host cell. |
cellular component |
| GO:0005737 | | cytoplasm | | All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. |
| GO:0005829 | | cytosol | | The part of the cytoplasm that does not contain organelles but which does contain other particulate matter, such as protein complexes. |
| GO:0022625 | | cytosolic large ribosomal subunit | | The large subunit of a ribosome located in the cytosol. |
| GO:0005925 | | focal adhesion | | Small region on the surface of a cell that anchors the cell to the extracellular matrix and that forms a point of termination of actin filaments. |
| GO:0005622 | | intracellular | | The living contents of a cell; the matter contained within (but not including) the plasma membrane, usually taken to exclude large vacuoles and masses of secretory or ingested material. In eukaryotes it includes the nucleus and cytoplasm. |
| GO:0030529 | | intracellular ribonucleoprotein complex | | An intracellular macromolecular complex containing both protein and RNA molecules. |
| GO:0015934 | | large ribosomal subunit | | The larger of the two subunits of a ribosome. Two sites on the ribosomal large subunit are involved in translation, namely the aminoacyl site (A site) and peptidyl site (P site). |
| GO:0016020 | | membrane | | A lipid bilayer along with all the proteins and protein complexes embedded in it an attached to it. |
| GO:0005730 | | nucleolus | | A small, dense body one or more of which are present in the nucleus of eukaryotic cells. It is rich in RNA and protein, is not bounded by a limiting membrane, and is not seen during mitosis. Its prime function is the transcription of the nucleolar DNA into 45S ribosomal-precursor RNA, the processing of this RNA into 5.8S, 18S, and 28S components of ribosomal RNA, and the association of these components with 5S RNA and proteins synthesized outside the nucleolus. This association results in the formation of ribonucleoprotein precursors; these pass into the cytoplasm and mature into the 40S and 60S subunits of the ribosome. |
| GO:0005840 | | ribosome | | An intracellular organelle, about 200 A in diameter, consisting of RNA and protein. It is the site of protein biosynthesis resulting from translation of messenger RNA (mRNA). It consists of two subunits, one large and one small, each containing only protein and RNA. Both the ribosome and its subunits are characterized by their sedimentation coefficients, expressed in Svedberg units (symbol: S). Hence, the prokaryotic ribosome (70S) comprises a large (50S) subunit and a small (30S) subunit, while the eukaryotic ribosome (80S) comprises a large (60S) subunit and a small (40S) subunit. Two sites on the ribosomal large subunit are involved in translation, namely the aminoacyl site (A site) and peptidyl site (P site). Ribosomes from prokaryotes, eukaryotes, mitochondria, and chloroplasts have characteristically distinct ribosomal proteins. |
|