Asymmetric/Biological Unit(hide GO term definitions)
Chain A ( OGT_MYCTU | P9WJW5)
molecular function |
| GO:0003824 | | catalytic activity | | Catalysis of a biochemical reaction at physiological temperatures. In biologically catalyzed reactions, the reactants are known as substrates, and the catalysts are naturally occurring macromolecular substances known as enzymes. Enzymes possess specific binding sites for substrates, and are usually composed wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is often also regarded as enzymatic. |
| GO:0003684 | | damaged DNA binding | | Interacting selectively and non-covalently with damaged DNA. |
| GO:0003908 | | methylated-DNA-[protein]-cysteine S-methyltransferase activity | | Catalysis of the reaction: DNA (containing 6-O-methylguanine) + (protein)-L-cysteine = DNA (without 6-O-methylguanine) + protein S-methyl-L-cysteine. |
| GO:0008168 | | methyltransferase activity | | Catalysis of the transfer of a methyl group to an acceptor molecule. |
| GO:0016740 | | transferase activity | | Catalysis of the transfer of a group, e.g. a methyl group, glycosyl group, acyl group, phosphorus-containing, or other groups, from one compound (generally regarded as the donor) to another compound (generally regarded as the acceptor). Transferase is the systematic name for any enzyme of EC class 2. |
biological process |
| GO:0006307 | | DNA dealkylation involved in DNA repair | | The repair of alkylation damage, e.g. the removal of the alkyl group at the O6-position of guanine by O6-alkylguanine-DNA alkyltransferase (AGT). |
| GO:0006281 | | DNA repair | | The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. |
| GO:0006974 | | cellular response to DNA damage stimulus | | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism. |
| GO:0032259 | | methylation | | The process in which a methyl group is covalently attached to a molecule. |
| GO:0051409 | | response to nitrosative stress | | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a nitrosative stress stimulus. Nitrosative stress is a state often resulting from exposure to high levels of nitric oxide (NO) or the highly reactive oxidant peroxynitrite, which is produced following interaction of NO with superoxide anions. |
cellular component |
| GO:0005737 | | cytoplasm | | All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. |
| GO:0005886 | | plasma membrane | | The membrane surrounding a cell that separates the cell from its external environment. It consists of a phospholipid bilayer and associated proteins. |
Chain A ( OGT_MYCTO | P9WJW4)
molecular function |
| GO:0003824 | | catalytic activity | | Catalysis of a biochemical reaction at physiological temperatures. In biologically catalyzed reactions, the reactants are known as substrates, and the catalysts are naturally occurring macromolecular substances known as enzymes. Enzymes possess specific binding sites for substrates, and are usually composed wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is often also regarded as enzymatic. |
| GO:0003908 | | methylated-DNA-[protein]-cysteine S-methyltransferase activity | | Catalysis of the reaction: DNA (containing 6-O-methylguanine) + (protein)-L-cysteine = DNA (without 6-O-methylguanine) + protein S-methyl-L-cysteine. |
| GO:0008168 | | methyltransferase activity | | Catalysis of the transfer of a methyl group to an acceptor molecule. |
| GO:0016740 | | transferase activity | | Catalysis of the transfer of a group, e.g. a methyl group, glycosyl group, acyl group, phosphorus-containing, or other groups, from one compound (generally regarded as the donor) to another compound (generally regarded as the acceptor). Transferase is the systematic name for any enzyme of EC class 2. |
biological process |
| GO:0006307 | | DNA dealkylation involved in DNA repair | | The repair of alkylation damage, e.g. the removal of the alkyl group at the O6-position of guanine by O6-alkylguanine-DNA alkyltransferase (AGT). |
| GO:0006281 | | DNA repair | | The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. |
| GO:0006974 | | cellular response to DNA damage stimulus | | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism. |
| GO:0032259 | | methylation | | The process in which a methyl group is covalently attached to a molecule. |
cellular component |
| GO:0005737 | | cytoplasm | | All of the contents of a cell excluding the plasma membrane and nucleus, but including other subcellular structures. |
|