molecular function |
| GO:0003824 | | catalytic activity | | Catalysis of a biochemical reaction at physiological temperatures. In biologically catalyzed reactions, the reactants are known as substrates, and the catalysts are naturally occurring macromolecular substances known as enzymes. Enzymes possess specific binding sites for substrates, and are usually composed wholly or largely of protein, but RNA that has catalytic activity (ribozyme) is often also regarded as enzymatic. |
| GO:0016491 | | oxidoreductase activity | | Catalysis of an oxidation-reduction (redox) reaction, a reversible chemical reaction in which the oxidation state of an atom or atoms within a molecule is altered. One substrate acts as a hydrogen or electron donor and becomes oxidized, while the other acts as hydrogen or electron acceptor and becomes reduced. |
| GO:0016671 | | oxidoreductase activity, acting on a sulfur group of donors, disulfide as acceptor | | Catalysis of an oxidation-reduction (redox) reaction in which a sulfur-containing group acts as a hydrogen or electron donor and reduces disulfide. |
| GO:0033743 | | peptide-methionine (R)-S-oxide reductase activity | | Catalysis of the reaction: peptide-L-methionine + H(2)O + thioredoxin disulfide = peptide-L-methionine (R)-S-oxide + thioredoxin. Can act on oxidized methionine in peptide linkage with specificity for the R enantiomer. Thioredoxin disulfide is the oxidized form of thioredoxin. |
| GO:0008113 | | peptide-methionine (S)-S-oxide reductase activity | | Catalysis of the reactions: peptide-L-methionine + thioredoxin disulfide + H2O = peptide-L-methionine (S)-S-oxide + thioredoxin, and L-methionine + thioredoxin disulfide + H2O = L-methionine (S)-S-oxide + thioredoxin. Can act on oxidized methionine in peptide linkage with specificity for the S enantiomer. Thioredoxin disulfide is the oxidized form of thioredoxin. |
biological process |
| GO:0008152 | | metabolic process | | The chemical reactions and pathways, including anabolism and catabolism, by which living organisms transform chemical substances. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. |
| GO:0055114 | | oxidation-reduction process | | A metabolic process that results in the removal or addition of one or more electrons to or from a substance, with or without the concomitant removal or addition of a proton or protons. |
| GO:0030091 | | protein repair | | The process of restoring a protein to its original state after damage by such things as oxidation or spontaneous decomposition of residues. |
| GO:0006979 | | response to oxidative stress | | Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of oxidative stress, a state often resulting from exposure to high levels of reactive oxygen species, e.g. superoxide anions, hydrogen peroxide (H2O2), and hydroxyl radicals. |