molecular function |
| GO:0004742 | | dihydrolipoyllysine-residue acetyltransferase activity | | Catalysis of the reaction: acetyl-CoA + dihydrolipoamide = CoA + S-acetyldihydrolipoamide. |
| GO:0005515 | | protein binding | | Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules). |
| GO:0034604 | | pyruvate dehydrogenase (NAD+) activity | | Catalysis of the reaction: pyruvate + CoA + NAD+ = acetyl-CoA + CO2 + NADH. |
| GO:0016740 | | transferase activity | | Catalysis of the transfer of a group, e.g. a methyl group, glycosyl group, acyl group, phosphorus-containing, or other groups, from one compound (generally regarded as the donor) to another compound (generally regarded as the acceptor). Transferase is the systematic name for any enzyme of EC class 2. |
| GO:0016746 | | transferase activity, transferring acyl groups | | Catalysis of the transfer of an acyl group from one compound (donor) to another (acceptor). |
biological process |
| GO:0006086 | | acetyl-CoA biosynthetic process from pyruvate | | The chemical reactions and pathways resulting in the formation of acetyl-CoA from pyruvate. |
| GO:0005975 | | carbohydrate metabolic process | | The chemical reactions and pathways involving carbohydrates, any of a group of organic compounds based of the general formula Cx(H2O)y. Includes the formation of carbohydrate derivatives by the addition of a carbohydrate residue to another molecule. |
| GO:0006006 | | glucose metabolic process | | The chemical reactions and pathways involving glucose, the aldohexose gluco-hexose. D-glucose is dextrorotatory and is sometimes known as dextrose; it is an important source of energy for living organisms and is found free as well as combined in homo- and hetero-oligosaccharides and polysaccharides. |
| GO:0046487 | | glyoxylate metabolic process | | The chemical reactions and pathways involving glyoxylate, the anion of glyoxylic acid, HOC-COOH. |
| GO:0008152 | | metabolic process | | The chemical reactions and pathways, including anabolism and catabolism, by which living organisms transform chemical substances. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. |
| GO:0006090 | | pyruvate metabolic process | | The chemical reactions and pathways involving pyruvate, 2-oxopropanoate. |
| GO:0010510 | | regulation of acetyl-CoA biosynthetic process from pyruvate | | Any process that modulates the frequency, rate or extent of the chemical reactions and pathways resulting in the formation of acetyl-CoA from pyruvate. |
| GO:0030431 | | sleep | | Any process in which an organism enters and maintains a periodic, readily reversible state of reduced awareness and metabolic activity. Usually accompanied by physical relaxation, the onset of sleep in humans and other mammals is marked by a change in the electrical activity of the brain. |
| GO:0006099 | | tricarboxylic acid cycle | | A nearly universal metabolic pathway in which the acetyl group of acetyl coenzyme A is effectively oxidized to two CO2 and four pairs of electrons are transferred to coenzymes. The acetyl group combines with oxaloacetate to form citrate, which undergoes successive transformations to isocitrate, 2-oxoglutarate, succinyl-CoA, succinate, fumarate, malate, and oxaloacetate again, thus completing the cycle. In eukaryotes the tricarboxylic acid is confined to the mitochondria. See also glyoxylate cycle. |
cellular component |
| GO:0005759 | | mitochondrial matrix | | The gel-like material, with considerable fine structure, that lies in the matrix space, or lumen, of a mitochondrion. It contains the enzymes of the tricarboxylic acid cycle and, in some organisms, the enzymes concerned with fatty acid oxidation. |
| GO:0005967 | | mitochondrial pyruvate dehydrogenase complex | | Complex that carries out the oxidative decarboxylation of pyruvate to form acetyl-CoA in eukaryotes; includes subunits possessing three catalytic activities: pyruvate dehydrogenase (E1), dihydrolipoamide S-acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). The This Eukaryotic form usually contains more subunits than its bacterial counterpart; for example, one known complex contains 30 E1 dimers, 60 E2 monomers, and 6 E3 dimers as well as a few copies of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase. |
| GO:0005739 | | mitochondrion | | A semiautonomous, self replicating organelle that occurs in varying numbers, shapes, and sizes in the cytoplasm of virtually all eukaryotic cells. It is notably the site of tissue respiration. |
| GO:0043209 | | myelin sheath | | An electrically insulating fatty layer that surrounds the axons of many neurons. It is an outgrowth of glial cells: Schwann cells supply the myelin for peripheral neurons while oligodendrocytes supply it to those of the central nervous system. |
| GO:0045254 | | pyruvate dehydrogenase complex | | Complex that carries out the oxidative decarboxylation of pyruvate to form acetyl-CoA; comprises subunits possessing three catalytic activities: pyruvate dehydrogenase (E1), dihydrolipoamide S-acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3). |