Asymmetric/Biological Unit(hide GO term definitions)
Chain A,B ( RUSA_ECOLI | P0AG74)
molecular function |
| GO:0008821 | | crossover junction endodeoxyribonuclease activity | | Catalysis of the endonucleolytic cleavage at a junction such as a reciprocal single-stranded crossover between two homologous DNA duplexes (Holliday junction). |
| GO:0004519 | | endonuclease activity | | Catalysis of the hydrolysis of ester linkages within nucleic acids by creating internal breaks. |
| GO:0016787 | | hydrolase activity | | Catalysis of the hydrolysis of various bonds, e.g. C-O, C-N, C-C, phosphoric anhydride bonds, etc. Hydrolase is the systematic name for any enzyme of EC class 3. |
| GO:0000287 | | magnesium ion binding | | Interacting selectively and non-covalently with magnesium (Mg) ions. |
| GO:0046872 | | metal ion binding | | Interacting selectively and non-covalently with any metal ion. |
| GO:0004518 | | nuclease activity | | Catalysis of the hydrolysis of ester linkages within nucleic acids. |
| GO:0010844 | | recombination hotspot binding | | Interacting selectively and non-covalently with a region in a genome which promotes recombination. |
biological process |
| GO:0006310 | | DNA recombination | | Any process in which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents. In eukaryotes genetic recombination can occur by chromosome assortment, intrachromosomal recombination, or nonreciprocal interchromosomal recombination. Intrachromosomal recombination occurs by crossing over. In bacteria it may occur by genetic transformation, conjugation, transduction, or F-duction. |
| GO:0006281 | | DNA repair | | The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. |
| GO:0006974 | | cellular response to DNA damage stimulus | | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism. |
| GO:0090305 | | nucleic acid phosphodiester bond hydrolysis | | The nucleic acid metabolic process in which the phosphodiester bonds between nucleotides are cleaved by hydrolysis. |
cellular component |
| GO:0048476 | | Holliday junction resolvase complex | | A protein complex that mediates the conversion of a Holliday junction into two separate duplex DNA molecules; the complex includes a single- or multisubunit helicase that catalyzes the extension of heteroduplex DNA by branch migration and a nuclease that resolves the junction by nucleolytic cleavage. |
Chain A,B ( RUSA_ECOL6 | P0AG75)
molecular function |
| GO:0008821 | | crossover junction endodeoxyribonuclease activity | | Catalysis of the endonucleolytic cleavage at a junction such as a reciprocal single-stranded crossover between two homologous DNA duplexes (Holliday junction). |
| GO:0004519 | | endonuclease activity | | Catalysis of the hydrolysis of ester linkages within nucleic acids by creating internal breaks. |
| GO:0016787 | | hydrolase activity | | Catalysis of the hydrolysis of various bonds, e.g. C-O, C-N, C-C, phosphoric anhydride bonds, etc. Hydrolase is the systematic name for any enzyme of EC class 3. |
| GO:0000287 | | magnesium ion binding | | Interacting selectively and non-covalently with magnesium (Mg) ions. |
| GO:0046872 | | metal ion binding | | Interacting selectively and non-covalently with any metal ion. |
| GO:0004518 | | nuclease activity | | Catalysis of the hydrolysis of ester linkages within nucleic acids. |
biological process |
| GO:0006310 | | DNA recombination | | Any process in which a new genotype is formed by reassortment of genes resulting in gene combinations different from those that were present in the parents. In eukaryotes genetic recombination can occur by chromosome assortment, intrachromosomal recombination, or nonreciprocal interchromosomal recombination. Intrachromosomal recombination occurs by crossing over. In bacteria it may occur by genetic transformation, conjugation, transduction, or F-duction. |
| GO:0006281 | | DNA repair | | The process of restoring DNA after damage. Genomes are subject to damage by chemical and physical agents in the environment (e.g. UV and ionizing radiations, chemical mutagens, fungal and bacterial toxins, etc.) and by free radicals or alkylating agents endogenously generated in metabolism. DNA is also damaged because of errors during its replication. A variety of different DNA repair pathways have been reported that include direct reversal, base excision repair, nucleotide excision repair, photoreactivation, bypass, double-strand break repair pathway, and mismatch repair pathway. |
| GO:0006974 | | cellular response to DNA damage stimulus | | Any process that results in a change in state or activity of a cell (in terms of movement, secretion, enzyme production, gene expression, etc.) as a result of a stimulus indicating damage to its DNA from environmental insults or errors during metabolism. |
| GO:0090305 | | nucleic acid phosphodiester bond hydrolysis | | The nucleic acid metabolic process in which the phosphodiester bonds between nucleotides are cleaved by hydrolysis. |
|