Asymmetric/Biological Unit(hide GO term definitions)
Chain A ( MED7_YEAST | Q08278)
molecular function |
| GO:0001104 | | RNA polymerase II transcription cofactor activity | | Interacting selectively and non-covalently with an RNA polymerase II (RNAP II) regulatory transcription factor and also with the RNAP II basal transcription machinery in order to modulate transcription. Cofactors generally do not bind DNA, but rather mediate protein-protein interactions between regulatory transcription factors and the basal RNAP II transcription machinery. |
| GO:0003674 | | molecular_function | | Elemental activities, such as catalysis or binding, describing the actions of a gene product at the molecular level. A given gene product may exhibit one or more molecular functions. |
| GO:0005515 | | protein binding | | Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules). |
biological process |
| GO:0000122 | | negative regulation of transcription from RNA polymerase II promoter | | Any process that stops, prevents, or reduces the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0045944 | | positive regulation of transcription from RNA polymerase II promoter | | Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0006357 | | regulation of transcription from RNA polymerase II promoter | | Any process that modulates the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0006355 | | regulation of transcription, DNA-templated | | Any process that modulates the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0006351 | | transcription, DNA-templated | | The cellular synthesis of RNA on a template of DNA. |
cellular component |
| GO:0070847 | | core mediator complex | | A protein complex that interacts with the carboxy-terminal domain of the largest subunit of RNA polymerase II and plays an active role in transducing the signal from a transcription factor to the transcriptional machinery. The core mediator complex has a stimulatory effect on basal transcription, and contains most of the same subdomains as the larger form of mediator complex -- a head domain comprising proteins known in Saccharomyces as Srb2, -4, and -5, Med6, -8, and -11, and Rox3 proteins; a middle domain comprising Med1, -4, and -7, Nut1 and -2, Cse2, Rgr1, Soh1, and Srb7 proteins; and a tail consisting of Gal11p, Med2p, Pgd1p, and Sin4p -- but lacks the regulatory subcomplex comprising Ssn2, -3, and -8, and Srb8 proteins. Metazoan core mediator complexes have similar modular structures and include homologs of yeast Srb and Med proteins. |
| GO:0016592 | | mediator complex | | A protein complex that interacts with the carboxy-terminal domain of the largest subunit of RNA polymerase II and plays an active role in transducing the signal from a transcription factor to the transcriptional machinery. The mediator complex is required for activation of transcription of most protein-coding genes, but can also act as a transcriptional corepressor. The Saccharomyces complex contains several identifiable subcomplexes: a head domain comprising Srb2, -4, and -5, Med6, -8, and -11, and Rox3 proteins; a middle domain comprising Med1, -4, and -7, Nut1 and -2, Cse2, Rgr1, Soh1, and Srb7 proteins; a tail consisting of Gal11p, Med2p, Pgd1p, and Sin4p; and a regulatory subcomplex comprising Ssn2, -3, and -8, and Srb8 proteins. Metazoan mediator complexes have similar modular structures and include homologs of yeast Srb and Med proteins. |
| GO:0005634 | | nucleus | | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. |
Chain B ( MED21_YEAST | P47822)
molecular function |
| GO:0001103 | | RNA polymerase II repressing transcription factor binding | | Interacting selectively and non-covalently with an RNA polymerase II transcription repressing factor, a protein involved in negative regulation of transcription. |
| GO:0001105 | | RNA polymerase II transcription coactivator activity | | Interacting selectively and non-covalently with an RNA polymerase II (RNAP II) regulatory transcription factor and also with the RNAP II basal transcription machinery in order to increase the frequency, rate or extent of transcription. Cofactors generally do not bind DNA, but rather mediate protein-protein interactions between activating transcription factors and the basal RNAP II transcription machinery. |
| GO:0001106 | | RNA polymerase II transcription corepressor activity | | Interacting selectively and non-covalently with an RNA polymerase II repressing transcription factor and also with the RNA polymerase II basal transcription machinery in order to stop, prevent, or reduce the frequency, rate or extent of transcription. Cofactors generally do not bind DNA, but rather mediate protein-protein interactions between repressive transcription factors and the basal transcription machinery. |
| GO:0005515 | | protein binding | | Interacting selectively and non-covalently with any protein or protein complex (a complex of two or more proteins that may include other nonprotein molecules). |
biological process |
| GO:0000122 | | negative regulation of transcription from RNA polymerase II promoter | | Any process that stops, prevents, or reduces the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0045944 | | positive regulation of transcription from RNA polymerase II promoter | | Any process that activates or increases the frequency, rate or extent of transcription from an RNA polymerase II promoter. |
| GO:0006355 | | regulation of transcription, DNA-templated | | Any process that modulates the frequency, rate or extent of cellular DNA-templated transcription. |
| GO:0006351 | | transcription, DNA-templated | | The cellular synthesis of RNA on a template of DNA. |
cellular component |
| GO:0070847 | | core mediator complex | | A protein complex that interacts with the carboxy-terminal domain of the largest subunit of RNA polymerase II and plays an active role in transducing the signal from a transcription factor to the transcriptional machinery. The core mediator complex has a stimulatory effect on basal transcription, and contains most of the same subdomains as the larger form of mediator complex -- a head domain comprising proteins known in Saccharomyces as Srb2, -4, and -5, Med6, -8, and -11, and Rox3 proteins; a middle domain comprising Med1, -4, and -7, Nut1 and -2, Cse2, Rgr1, Soh1, and Srb7 proteins; and a tail consisting of Gal11p, Med2p, Pgd1p, and Sin4p -- but lacks the regulatory subcomplex comprising Ssn2, -3, and -8, and Srb8 proteins. Metazoan core mediator complexes have similar modular structures and include homologs of yeast Srb and Med proteins. |
| GO:0016592 | | mediator complex | | A protein complex that interacts with the carboxy-terminal domain of the largest subunit of RNA polymerase II and plays an active role in transducing the signal from a transcription factor to the transcriptional machinery. The mediator complex is required for activation of transcription of most protein-coding genes, but can also act as a transcriptional corepressor. The Saccharomyces complex contains several identifiable subcomplexes: a head domain comprising Srb2, -4, and -5, Med6, -8, and -11, and Rox3 proteins; a middle domain comprising Med1, -4, and -7, Nut1 and -2, Cse2, Rgr1, Soh1, and Srb7 proteins; a tail consisting of Gal11p, Med2p, Pgd1p, and Sin4p; and a regulatory subcomplex comprising Ssn2, -3, and -8, and Srb8 proteins. Metazoan mediator complexes have similar modular structures and include homologs of yeast Srb and Med proteins. |
| GO:0005634 | | nucleus | | A membrane-bounded organelle of eukaryotic cells in which chromosomes are housed and replicated. In most cells, the nucleus contains all of the cell's chromosomes except the organellar chromosomes, and is the site of RNA synthesis and processing. In some species, or in specialized cell types, RNA metabolism or DNA replication may be absent. |
|